乙烯中同位素诱导显对称破缺的超快探测。

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alessandro Nicola Nardi, Alexie Boyer, Yaowei Hu, Vincent Loriot, Franck Lépine, Morgane Vacher, Saikat Nandi
{"title":"乙烯中同位素诱导显对称破缺的超快探测。","authors":"Alessandro Nicola Nardi, Alexie Boyer, Yaowei Hu, Vincent Loriot, Franck Lépine, Morgane Vacher, Saikat Nandi","doi":"10.1038/s42004-025-01621-z","DOIUrl":null,"url":null,"abstract":"<p><p>Symmetry governs nature's laws, yet many of the natural phenomena occur due to the breakdown of symmetry. Here, we show how isotope-induced inversion symmetry breaking influences ultrafast photoisomerization processes in ethylene. Using extreme ultraviolet pump - near infrared probe time-of-flight mass spectrometry, we find that replacing one of the carbon atoms in ethylene with a <sup>13</sup>C isotope leads to twice-faster structural relaxation via ethylene-ethylidene isomerization in the photo-excited molecular cation. Advanced trajectory surface hopping calculations incorporating the nuclear symmetry of the molecular systems, reveal that it arises from the mixing of different normal modes in the isotope-substituted species, interactions otherwise forbidden by symmetry. Although the mixing does not alter the symmetry of the electronic Hamiltonian, it modifies that of the nuclear Hamiltonian, causing explicit symmetry breaking. This facilitates efficient intra-molecular vibrational energy redistribution, lowering the isomerization yield. Our findings offer opportunities to use isotope-induced nuclear symmetry breaking to control the outcome of light-molecule interactions across ultrafast timescales.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"222"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrafast probing of isotope-induced explicit symmetry breaking in ethylene.\",\"authors\":\"Alessandro Nicola Nardi, Alexie Boyer, Yaowei Hu, Vincent Loriot, Franck Lépine, Morgane Vacher, Saikat Nandi\",\"doi\":\"10.1038/s42004-025-01621-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Symmetry governs nature's laws, yet many of the natural phenomena occur due to the breakdown of symmetry. Here, we show how isotope-induced inversion symmetry breaking influences ultrafast photoisomerization processes in ethylene. Using extreme ultraviolet pump - near infrared probe time-of-flight mass spectrometry, we find that replacing one of the carbon atoms in ethylene with a <sup>13</sup>C isotope leads to twice-faster structural relaxation via ethylene-ethylidene isomerization in the photo-excited molecular cation. Advanced trajectory surface hopping calculations incorporating the nuclear symmetry of the molecular systems, reveal that it arises from the mixing of different normal modes in the isotope-substituted species, interactions otherwise forbidden by symmetry. Although the mixing does not alter the symmetry of the electronic Hamiltonian, it modifies that of the nuclear Hamiltonian, causing explicit symmetry breaking. This facilitates efficient intra-molecular vibrational energy redistribution, lowering the isomerization yield. Our findings offer opportunities to use isotope-induced nuclear symmetry breaking to control the outcome of light-molecule interactions across ultrafast timescales.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"222\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01621-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01621-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对称支配着自然法则,然而许多自然现象的发生是由于对称的破坏。在这里,我们展示了同位素诱导的反转对称性破缺如何影响乙烯的超快光异构化过程。利用极紫外泵-近红外探针飞行时间质谱法,我们发现用13C同位素取代乙烯中的一个碳原子可以通过光激发分子阳离子中的乙烯-乙炔异构化导致两倍快的结构弛豫。结合分子体系核对称性的高级轨道表面跳跃计算表明,它是由同位素取代种中不同正态模式的混合引起的,否则,这种相互作用是对称所禁止的。虽然混合不改变电子哈密顿量的对称性,但它改变了核哈密顿量的对称性,导致明显的对称性破缺。这有利于有效的分子内振动能量再分配,降低异构化产率。我们的发现为利用同位素诱导的核对称破缺来控制超快时间尺度上光分子相互作用的结果提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrafast probing of isotope-induced explicit symmetry breaking in ethylene.

Symmetry governs nature's laws, yet many of the natural phenomena occur due to the breakdown of symmetry. Here, we show how isotope-induced inversion symmetry breaking influences ultrafast photoisomerization processes in ethylene. Using extreme ultraviolet pump - near infrared probe time-of-flight mass spectrometry, we find that replacing one of the carbon atoms in ethylene with a 13C isotope leads to twice-faster structural relaxation via ethylene-ethylidene isomerization in the photo-excited molecular cation. Advanced trajectory surface hopping calculations incorporating the nuclear symmetry of the molecular systems, reveal that it arises from the mixing of different normal modes in the isotope-substituted species, interactions otherwise forbidden by symmetry. Although the mixing does not alter the symmetry of the electronic Hamiltonian, it modifies that of the nuclear Hamiltonian, causing explicit symmetry breaking. This facilitates efficient intra-molecular vibrational energy redistribution, lowering the isomerization yield. Our findings offer opportunities to use isotope-induced nuclear symmetry breaking to control the outcome of light-molecule interactions across ultrafast timescales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信