Mairi McCauley, Lida Ansari, Farzan Gity, Matthew Rogers, Joel Burton, Satoshi Sasaki, Quentin Ramasse, Craig Knox, Paul K Hurley, Donald MacLaren, Timothy Moorsom
{"title":"利用低损耗电子能量损失光谱研究高结晶Bi2Se3/C60异质结构中的杂化等离子体。","authors":"Mairi McCauley, Lida Ansari, Farzan Gity, Matthew Rogers, Joel Burton, Satoshi Sasaki, Quentin Ramasse, Craig Knox, Paul K Hurley, Donald MacLaren, Timothy Moorsom","doi":"10.1038/s43246-025-00886-0","DOIUrl":null,"url":null,"abstract":"<p><p>Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi<sub>2</sub>Se<sub>3</sub>, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi<sub>2</sub>Se<sub>3</sub>/C<sub>60</sub> with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of <i>π</i> states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"166"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigation of hybrid plasmons in a highly crystalline Bi<sub>2</sub>Se<sub>3</sub>/C<sub>60</sub> heterostructure using low-loss electron energy loss spectroscopy.\",\"authors\":\"Mairi McCauley, Lida Ansari, Farzan Gity, Matthew Rogers, Joel Burton, Satoshi Sasaki, Quentin Ramasse, Craig Knox, Paul K Hurley, Donald MacLaren, Timothy Moorsom\",\"doi\":\"10.1038/s43246-025-00886-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi<sub>2</sub>Se<sub>3</sub>, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi<sub>2</sub>Se<sub>3</sub>/C<sub>60</sub> with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of <i>π</i> states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"166\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00886-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00886-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of hybrid plasmons in a highly crystalline Bi2Se3/C60 heterostructure using low-loss electron energy loss spectroscopy.
Topological Insulators (TIs) present an interesting materials platform for nanoscale, high frequency devices because they support high mobility, low scattering electronic transport within confined surface states. However, a robust methodology to control the properties of surface plasmons in TIs has yet to be developed. Surface doping of TIs with molecules may provide tunable control of the two-dimensional plasmons in Bi2Se3, but exploration of such heterostructures is still at an early stage and usually confined to monolayers. We have grown heterostructures of Bi2Se3/C60 with exceptional crystallinity. Electron energy loss spectroscopy (EELS) reveals significant hybridisation of π states at the interface, despite the expectation for only weak van der Waals interactions, including quenching of 2D plasmons. Momentum-resolved EELS measurements are used to probe the plasmon dispersion, with Density Functional Theory predictions providing an interpretation of results based on interfacial charge dipoles. This work provides growth methodology and characterization of highly crystalline TI/molecular interfaces that can be engineered for plasmonic applications in energy, communications and sensing.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.