利用U-Net和迁移学习增强MRI图像中的脑肿瘤分割。

IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Amin Pourmahboubi, Nazanin Arsalani Saeed, Hamed Tabrizchi
{"title":"利用U-Net和迁移学习增强MRI图像中的脑肿瘤分割。","authors":"Amin Pourmahboubi, Nazanin Arsalani Saeed, Hamed Tabrizchi","doi":"10.1186/s12880-025-01837-4","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel transfer learning approach for segmenting brain tumors in Magnetic Resonance Imaging (MRI) images. Using Fluid-Attenuated Inversion Recovery (FLAIR) abnormality segmentation masks and MRI scans from The Cancer Genome Atlas's (TCGA's) lower-grade glioma collection, our proposed approach uses a VGG19-based U-Net architecture with fixed pretrained weights. The experimental findings, which show an Area Under the Curve (AUC) of 0.9957, F1-Score of 0.9679, Dice Coefficient of 0.9679, Precision of 0.9541, Recall of 0.9821, and Intersection-over-Union (IoU) of 0.9378, show how effective the proposed framework is. According to these metrics, the VGG19-powered U-Net outperforms not only the conventional U-Net model but also other variants that were compared and used different pre-trained backbones in the U-Net encoder.Clinical trial registrationNot applicable as this study utilized existing publicly available dataset and did not involve a clinical trial.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"307"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312496/pdf/","citationCount":"0","resultStr":"{\"title\":\"A brain tumor segmentation enhancement in MRI images using U-Net and transfer learning.\",\"authors\":\"Amin Pourmahboubi, Nazanin Arsalani Saeed, Hamed Tabrizchi\",\"doi\":\"10.1186/s12880-025-01837-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a novel transfer learning approach for segmenting brain tumors in Magnetic Resonance Imaging (MRI) images. Using Fluid-Attenuated Inversion Recovery (FLAIR) abnormality segmentation masks and MRI scans from The Cancer Genome Atlas's (TCGA's) lower-grade glioma collection, our proposed approach uses a VGG19-based U-Net architecture with fixed pretrained weights. The experimental findings, which show an Area Under the Curve (AUC) of 0.9957, F1-Score of 0.9679, Dice Coefficient of 0.9679, Precision of 0.9541, Recall of 0.9821, and Intersection-over-Union (IoU) of 0.9378, show how effective the proposed framework is. According to these metrics, the VGG19-powered U-Net outperforms not only the conventional U-Net model but also other variants that were compared and used different pre-trained backbones in the U-Net encoder.Clinical trial registrationNot applicable as this study utilized existing publicly available dataset and did not involve a clinical trial.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"307\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-025-01837-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01837-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的迁移学习方法,用于磁共振成像(MRI)图像中脑肿瘤的分割。利用液体衰减反转恢复(FLAIR)异常分割掩膜和来自癌症基因组图谱(TCGA)低级别胶质瘤收集的MRI扫描,我们提出的方法使用基于vgg19的U-Net架构,具有固定的预训练权重。实验结果显示,曲线下面积(AUC)为0.9957,F1-Score为0.9679,Dice系数为0.9679,Precision为0.9541,Recall为0.9821,intersection - overunion (IoU)为0.9378,表明了该框架的有效性。根据这些指标,vgg19驱动的U-Net不仅优于传统的U-Net模型,而且优于U-Net编码器中使用不同预训练骨干网的其他变体。临床试验注册不适用,因为本研究使用了现有的公开数据集,不涉及临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A brain tumor segmentation enhancement in MRI images using U-Net and transfer learning.

This paper presents a novel transfer learning approach for segmenting brain tumors in Magnetic Resonance Imaging (MRI) images. Using Fluid-Attenuated Inversion Recovery (FLAIR) abnormality segmentation masks and MRI scans from The Cancer Genome Atlas's (TCGA's) lower-grade glioma collection, our proposed approach uses a VGG19-based U-Net architecture with fixed pretrained weights. The experimental findings, which show an Area Under the Curve (AUC) of 0.9957, F1-Score of 0.9679, Dice Coefficient of 0.9679, Precision of 0.9541, Recall of 0.9821, and Intersection-over-Union (IoU) of 0.9378, show how effective the proposed framework is. According to these metrics, the VGG19-powered U-Net outperforms not only the conventional U-Net model but also other variants that were compared and used different pre-trained backbones in the U-Net encoder.Clinical trial registrationNot applicable as this study utilized existing publicly available dataset and did not involve a clinical trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信