Jasmine Velo, Christopher Marlowe Caipang, Albert Noblezada, Lorenz Inri Banabatac, Noel Peter Tan, Victor Marco Emmanuel Ferriols
{"title":"伊洛伊洛市垃圾填埋场土壤中节肢杆菌的全基因组序列揭示了潜在的塑料生物降解基因。","authors":"Jasmine Velo, Christopher Marlowe Caipang, Albert Noblezada, Lorenz Inri Banabatac, Noel Peter Tan, Victor Marco Emmanuel Ferriols","doi":"10.1007/s10532-025-10168-8","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics are synthetic materials that have transformed society in a lot of ways, yet widespread use of these materials has caused a staggering amount of pollution in the environment. Among these plastics, polypropylene and low-density polyethylene are two of the most used plastics for packaging globally. Currently, only two enzymes were characterized for low density polyethylene degradation while no specific enzymes have been confirmed to degrade polypropylene. In this study, one bacterial isolate from landfill soil was assessed for potential polypropylene and low-density polyethylene degradation abilities using gravimetric methods by measuring the initial and final weight of plastic films. Results showed that after 60 days of incubation, a total decrease of 8.04% was observed for polypropylene plastics and 3.13% for low density polyethylene plastics. Whole genome sequencing using Illumina Nextseq™ 1000 generated a total number of 3,746,011 assembled base pairs for Isolate 1 using SPAdes. Phylogenetic tree construction using the Bacterial Pan-Genome Analysis (BPGA) tool revealed close relation of the isolate to Arthrobacter sp. Analysis of the annotated whole genome sequence against the Plastic database revealed 11 putative protein coding genes that encode enzymes with potential to break down plastics.</p>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 4","pages":"72"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole genome sequence of Arthrobacter sp. from Iloilo City landfill soil unveils potential plastic biodegradation genes.\",\"authors\":\"Jasmine Velo, Christopher Marlowe Caipang, Albert Noblezada, Lorenz Inri Banabatac, Noel Peter Tan, Victor Marco Emmanuel Ferriols\",\"doi\":\"10.1007/s10532-025-10168-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastics are synthetic materials that have transformed society in a lot of ways, yet widespread use of these materials has caused a staggering amount of pollution in the environment. Among these plastics, polypropylene and low-density polyethylene are two of the most used plastics for packaging globally. Currently, only two enzymes were characterized for low density polyethylene degradation while no specific enzymes have been confirmed to degrade polypropylene. In this study, one bacterial isolate from landfill soil was assessed for potential polypropylene and low-density polyethylene degradation abilities using gravimetric methods by measuring the initial and final weight of plastic films. Results showed that after 60 days of incubation, a total decrease of 8.04% was observed for polypropylene plastics and 3.13% for low density polyethylene plastics. Whole genome sequencing using Illumina Nextseq™ 1000 generated a total number of 3,746,011 assembled base pairs for Isolate 1 using SPAdes. Phylogenetic tree construction using the Bacterial Pan-Genome Analysis (BPGA) tool revealed close relation of the isolate to Arthrobacter sp. Analysis of the annotated whole genome sequence against the Plastic database revealed 11 putative protein coding genes that encode enzymes with potential to break down plastics.</p>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 4\",\"pages\":\"72\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10532-025-10168-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10532-025-10168-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Whole genome sequence of Arthrobacter sp. from Iloilo City landfill soil unveils potential plastic biodegradation genes.
Plastics are synthetic materials that have transformed society in a lot of ways, yet widespread use of these materials has caused a staggering amount of pollution in the environment. Among these plastics, polypropylene and low-density polyethylene are two of the most used plastics for packaging globally. Currently, only two enzymes were characterized for low density polyethylene degradation while no specific enzymes have been confirmed to degrade polypropylene. In this study, one bacterial isolate from landfill soil was assessed for potential polypropylene and low-density polyethylene degradation abilities using gravimetric methods by measuring the initial and final weight of plastic films. Results showed that after 60 days of incubation, a total decrease of 8.04% was observed for polypropylene plastics and 3.13% for low density polyethylene plastics. Whole genome sequencing using Illumina Nextseq™ 1000 generated a total number of 3,746,011 assembled base pairs for Isolate 1 using SPAdes. Phylogenetic tree construction using the Bacterial Pan-Genome Analysis (BPGA) tool revealed close relation of the isolate to Arthrobacter sp. Analysis of the annotated whole genome sequence against the Plastic database revealed 11 putative protein coding genes that encode enzymes with potential to break down plastics.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.