用于高灵敏度海洋细菌检测的激光调制MnBi2Te4太赫兹生物传感器。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Xin Hu, Wenhao Xu, Jing Peng, Baoxin Sun, Zhaoan Shao, Qi Song, Bingyuan Zhang, Hongzhuan Xuan
{"title":"用于高灵敏度海洋细菌检测的激光调制MnBi2Te4太赫兹生物传感器。","authors":"Xin Hu,&nbsp;Wenhao Xu,&nbsp;Jing Peng,&nbsp;Baoxin Sun,&nbsp;Zhaoan Shao,&nbsp;Qi Song,&nbsp;Bingyuan Zhang,&nbsp;Hongzhuan Xuan","doi":"10.1007/s00216-025-05996-9","DOIUrl":null,"url":null,"abstract":"<div><p>The prompt and precise identification of marine bacteria is essential for assessing ecosystem health and mitigating microbial contamination in aquatic environments. In this study, we introduce a terahertz (THz) biosensor that utilizes magneto-topological MnBi<sub>2</sub>Te<sub>4</sub> thin films, capitalizing on their quantum anomalous Hall effect and surface-dominated optoelectronic characteristics for label-free bacterial detection. Through the application of surface engineering and laser modulation techniques, the sensor achieves a detection limit of 9.4 CFU/mL for <i>Ruegeria pomeroyi</i> DSS-3, exhibiting adjustable THz photoresponses under ambient conditions. Notably, distinct THz absorption signatures were identified for the bacterial proteins sulfide-quinone oxidoreductase (SQR) and flavocytochrome <i>c</i> subunit B (FccB), with responsivity values ranging from 0.018 to 0.042 A/W at 0.1 THz. Field validation conducted in natural seawater across various latitudes (20–38°N) demonstrated minimal environmental interference (&lt; 1%), indicating the sensor's robustness in complex marine matrices. This research represents a pioneering effort in the integration of topological materials with THz photonics, providing a biocompatible, non-destructive, and cost-effective platform for real-time biomonitoring in marine environments.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":"417 21","pages":"4791 - 4801"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-modulated MnBi2Te4 terahertz biosensor for high-sensitivity marine bacterial detection\",\"authors\":\"Xin Hu,&nbsp;Wenhao Xu,&nbsp;Jing Peng,&nbsp;Baoxin Sun,&nbsp;Zhaoan Shao,&nbsp;Qi Song,&nbsp;Bingyuan Zhang,&nbsp;Hongzhuan Xuan\",\"doi\":\"10.1007/s00216-025-05996-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prompt and precise identification of marine bacteria is essential for assessing ecosystem health and mitigating microbial contamination in aquatic environments. In this study, we introduce a terahertz (THz) biosensor that utilizes magneto-topological MnBi<sub>2</sub>Te<sub>4</sub> thin films, capitalizing on their quantum anomalous Hall effect and surface-dominated optoelectronic characteristics for label-free bacterial detection. Through the application of surface engineering and laser modulation techniques, the sensor achieves a detection limit of 9.4 CFU/mL for <i>Ruegeria pomeroyi</i> DSS-3, exhibiting adjustable THz photoresponses under ambient conditions. Notably, distinct THz absorption signatures were identified for the bacterial proteins sulfide-quinone oxidoreductase (SQR) and flavocytochrome <i>c</i> subunit B (FccB), with responsivity values ranging from 0.018 to 0.042 A/W at 0.1 THz. Field validation conducted in natural seawater across various latitudes (20–38°N) demonstrated minimal environmental interference (&lt; 1%), indicating the sensor's robustness in complex marine matrices. This research represents a pioneering effort in the integration of topological materials with THz photonics, providing a biocompatible, non-destructive, and cost-effective platform for real-time biomonitoring in marine environments.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\"417 21\",\"pages\":\"4791 - 4801\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00216-025-05996-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00216-025-05996-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

海洋细菌的迅速和精确鉴定对于评估生态系统健康和减轻水生环境中的微生物污染至关重要。在这项研究中,我们引入了一种太赫兹(THz)生物传感器,该传感器利用磁拓扑MnBi2Te4薄膜,利用其量子反常霍尔效应和表面主导光电特性进行无标签细菌检测。通过表面工程和激光调制技术的应用,该传感器对绿叶藻DSS-3的检测限为9.4 CFU/mL,在环境条件下表现出可调的太赫兹光响应。值得注意的是,细菌蛋白硫化物-醌氧化还原酶(SQR)和黄细胞色素c亚基B (FccB)的太赫兹吸收特征明显,在0.1太赫兹下的响应值为0.018 ~ 0.042 A/W。在不同纬度(20-38°N)的天然海水中进行的现场验证表明,环境干扰最小(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser-modulated MnBi2Te4 terahertz biosensor for high-sensitivity marine bacterial detection

The prompt and precise identification of marine bacteria is essential for assessing ecosystem health and mitigating microbial contamination in aquatic environments. In this study, we introduce a terahertz (THz) biosensor that utilizes magneto-topological MnBi2Te4 thin films, capitalizing on their quantum anomalous Hall effect and surface-dominated optoelectronic characteristics for label-free bacterial detection. Through the application of surface engineering and laser modulation techniques, the sensor achieves a detection limit of 9.4 CFU/mL for Ruegeria pomeroyi DSS-3, exhibiting adjustable THz photoresponses under ambient conditions. Notably, distinct THz absorption signatures were identified for the bacterial proteins sulfide-quinone oxidoreductase (SQR) and flavocytochrome c subunit B (FccB), with responsivity values ranging from 0.018 to 0.042 A/W at 0.1 THz. Field validation conducted in natural seawater across various latitudes (20–38°N) demonstrated minimal environmental interference (< 1%), indicating the sensor's robustness in complex marine matrices. This research represents a pioneering effort in the integration of topological materials with THz photonics, providing a biocompatible, non-destructive, and cost-effective platform for real-time biomonitoring in marine environments.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信