预冷冻辅助湿退火产生具有可调含水量的机械坚固水凝胶。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Junjie Wang, Yahui Wang, Chao Song, Qin Su, Haidi Wu, Yifan Feng, Cheng Guan, Huaiguo Xue, Longcheng Tang and Jiefeng Gao*, 
{"title":"预冷冻辅助湿退火产生具有可调含水量的机械坚固水凝胶。","authors":"Junjie Wang,&nbsp;Yahui Wang,&nbsp;Chao Song,&nbsp;Qin Su,&nbsp;Haidi Wu,&nbsp;Yifan Feng,&nbsp;Cheng Guan,&nbsp;Huaiguo Xue,&nbsp;Longcheng Tang and Jiefeng Gao*,&nbsp;","doi":"10.1021/acs.biomac.5c00740","DOIUrl":null,"url":null,"abstract":"<p >Simultaneously enhancing hydrogels’ strength, stretchability, toughness, fatigue resistance, and tunable water content remains a challenge. Here, a universal “pre-freezing-assisted wet-annealing” strategy addresses these issues in poly(vinyl alcohol) (PVA) hydrogels. This dual-phase process enables controlled phase separation during prefreezing (promoting gelation from low-concentration polymer solutions for a high water content) and thermally driven polymer conformational rearrangement during wet-annealing (facilitating network densification, chain entanglement, and crystallite formation). The resulting hydrogels exhibit exceptional tensile strength (11.9 MPa), fracture strain (1275.4%), toughness (80.2 MJ m<sup>–3</sup>), fracture energy (21.8 kJ m<sup>–2</sup>), and fatigue threshold (902.8 J m<sup>–2</sup>), outperforming conventional single-step hydrogels. Multiscale characterizations reveal enhanced crystallinity and intensified hydrogen bonding as key contributors. Notably, the water content is tunable (55–88%). These hydrogels exhibit superior fatigue and swelling resistance, along with low friction coefficients (0.03–0.15) under physiological conditions, promising for underwater load-bearing applications. This work establishes a versatile processing paradigm for engineering high-performance hydrogels via synergistic phase transition and macromolecular reorganization.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 9","pages":"5858–5872"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-Freezing-Assisted Wet Annealing Yields Mechanically Robust Hydrogels with Tunable Water Content\",\"authors\":\"Junjie Wang,&nbsp;Yahui Wang,&nbsp;Chao Song,&nbsp;Qin Su,&nbsp;Haidi Wu,&nbsp;Yifan Feng,&nbsp;Cheng Guan,&nbsp;Huaiguo Xue,&nbsp;Longcheng Tang and Jiefeng Gao*,&nbsp;\",\"doi\":\"10.1021/acs.biomac.5c00740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Simultaneously enhancing hydrogels’ strength, stretchability, toughness, fatigue resistance, and tunable water content remains a challenge. Here, a universal “pre-freezing-assisted wet-annealing” strategy addresses these issues in poly(vinyl alcohol) (PVA) hydrogels. This dual-phase process enables controlled phase separation during prefreezing (promoting gelation from low-concentration polymer solutions for a high water content) and thermally driven polymer conformational rearrangement during wet-annealing (facilitating network densification, chain entanglement, and crystallite formation). The resulting hydrogels exhibit exceptional tensile strength (11.9 MPa), fracture strain (1275.4%), toughness (80.2 MJ m<sup>–3</sup>), fracture energy (21.8 kJ m<sup>–2</sup>), and fatigue threshold (902.8 J m<sup>–2</sup>), outperforming conventional single-step hydrogels. Multiscale characterizations reveal enhanced crystallinity and intensified hydrogen bonding as key contributors. Notably, the water content is tunable (55–88%). These hydrogels exhibit superior fatigue and swelling resistance, along with low friction coefficients (0.03–0.15) under physiological conditions, promising for underwater load-bearing applications. This work establishes a versatile processing paradigm for engineering high-performance hydrogels via synergistic phase transition and macromolecular reorganization.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 9\",\"pages\":\"5858–5872\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00740\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00740","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

同时,提高水凝胶的强度、拉伸性、韧性、抗疲劳性和可调含水量仍然是一个挑战。在这里,一种通用的“预冷冻辅助湿退火”策略解决了聚乙烯醇(PVA)水凝胶中的这些问题。这种双相工艺可以在预冷冻过程中控制相分离(促进低浓度聚合物溶液在高含水量下的凝胶化),在湿退火过程中实现热驱动聚合物构象重排(促进网络致密化、链缠结和晶体形成)。所制备的水凝胶具有优异的抗拉强度(11.9 MPa)、断裂应变(1275.4%)、韧性(80.2 MJ - m-3)、断裂能(21.8 kJ - m-2)和疲劳阈值(902.8 J - m-2),优于传统的单步水凝胶。多尺度表征显示结晶度的增强和氢键的增强是关键因素。值得注意的是,其含水量可调(55-88%)。这些水凝胶具有优异的抗疲劳和抗膨胀性能,并且在生理条件下具有低摩擦系数(0.03-0.15),有望用于水下承载应用。这项工作通过协同相变和大分子重组为工程高性能水凝胶建立了一个通用的处理范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pre-Freezing-Assisted Wet Annealing Yields Mechanically Robust Hydrogels with Tunable Water Content

Pre-Freezing-Assisted Wet Annealing Yields Mechanically Robust Hydrogels with Tunable Water Content

Simultaneously enhancing hydrogels’ strength, stretchability, toughness, fatigue resistance, and tunable water content remains a challenge. Here, a universal “pre-freezing-assisted wet-annealing” strategy addresses these issues in poly(vinyl alcohol) (PVA) hydrogels. This dual-phase process enables controlled phase separation during prefreezing (promoting gelation from low-concentration polymer solutions for a high water content) and thermally driven polymer conformational rearrangement during wet-annealing (facilitating network densification, chain entanglement, and crystallite formation). The resulting hydrogels exhibit exceptional tensile strength (11.9 MPa), fracture strain (1275.4%), toughness (80.2 MJ m–3), fracture energy (21.8 kJ m–2), and fatigue threshold (902.8 J m–2), outperforming conventional single-step hydrogels. Multiscale characterizations reveal enhanced crystallinity and intensified hydrogen bonding as key contributors. Notably, the water content is tunable (55–88%). These hydrogels exhibit superior fatigue and swelling resistance, along with low friction coefficients (0.03–0.15) under physiological conditions, promising for underwater load-bearing applications. This work establishes a versatile processing paradigm for engineering high-performance hydrogels via synergistic phase transition and macromolecular reorganization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信