具有成本效益的聚(3-烷基噻吩)基有机光伏:推进太阳能转换和光探测技术。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kai Zhang, Mengyuan Gao, Junjiang Wu, Chunlong Sun, Wenchao Zhao, Diyora Urazkulova, Vakhobjon Kuvondikov, Sherzod Nematov, Long Ye
{"title":"具有成本效益的聚(3-烷基噻吩)基有机光伏:推进太阳能转换和光探测技术。","authors":"Kai Zhang, Mengyuan Gao, Junjiang Wu, Chunlong Sun, Wenchao Zhao, Diyora Urazkulova, Vakhobjon Kuvondikov, Sherzod Nematov, Long Ye","doi":"10.1039/d5mh01115a","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(3-alkylthiophene)s (P3ATs), particularly poly(3-hexylthiophene) are cornerstone materials for organic photovoltaics, bridging efficiency, scalability, and solution processability. This article systematically outlines advancements in P3AT-based organic solar cells (OSCs) and photodetectors (OPDs), focusing on materials physics principles, structure-property relationships, and application-driven optimization. Innovations in polymerization methods enable high regioregularity and eco-friendly production. Critical structural parameters-molecular weight, regioregularity, and side-chain topology-are dissected, with strategically tailored molecular weight/regioregularity and alkyl chains optimizing charge transport and morphology. Dual donor/acceptor blending, solvent engineering, and post-processing strategies further enhance device performance, achieving high efficiency for OSCs and specific detectivities exceeding 10<sup>14</sup> Jones for OPDs. Photomultiplication mechanisms and spectral engineering enable ultrahigh responsivity (EQE >770 000%) and narrowband detection. Application-oriented designs, including intrinsically stretchable all-polymer systems and semi-transparent architectures, highlight P3ATs' versatility in wearable electronics and building-integrated photovoltaics. Future directions emphasize truly green solvents, simplified acceptors, and machine learning-guided material design to advance commercialization. By synergizing material innovation with scalable processing, P3ATs and their close variants offer a sustainable pathway for next-generation optoelectronics, balancing performance, stability, and environmental impact.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-effective poly(3-alkylthiophene)-based organic photovoltaics: advancing solar energy conversion and photodetection technologies.\",\"authors\":\"Kai Zhang, Mengyuan Gao, Junjiang Wu, Chunlong Sun, Wenchao Zhao, Diyora Urazkulova, Vakhobjon Kuvondikov, Sherzod Nematov, Long Ye\",\"doi\":\"10.1039/d5mh01115a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(3-alkylthiophene)s (P3ATs), particularly poly(3-hexylthiophene) are cornerstone materials for organic photovoltaics, bridging efficiency, scalability, and solution processability. This article systematically outlines advancements in P3AT-based organic solar cells (OSCs) and photodetectors (OPDs), focusing on materials physics principles, structure-property relationships, and application-driven optimization. Innovations in polymerization methods enable high regioregularity and eco-friendly production. Critical structural parameters-molecular weight, regioregularity, and side-chain topology-are dissected, with strategically tailored molecular weight/regioregularity and alkyl chains optimizing charge transport and morphology. Dual donor/acceptor blending, solvent engineering, and post-processing strategies further enhance device performance, achieving high efficiency for OSCs and specific detectivities exceeding 10<sup>14</sup> Jones for OPDs. Photomultiplication mechanisms and spectral engineering enable ultrahigh responsivity (EQE >770 000%) and narrowband detection. Application-oriented designs, including intrinsically stretchable all-polymer systems and semi-transparent architectures, highlight P3ATs' versatility in wearable electronics and building-integrated photovoltaics. Future directions emphasize truly green solvents, simplified acceptors, and machine learning-guided material design to advance commercialization. By synergizing material innovation with scalable processing, P3ATs and their close variants offer a sustainable pathway for next-generation optoelectronics, balancing performance, stability, and environmental impact.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01115a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01115a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚(3-烷基噻吩)s (p3at),特别是聚(3-己基噻吩)是有机光伏、桥接效率、可扩展性和溶液可加工性的基础材料。本文系统地概述了基于p3at的有机太阳能电池(OSCs)和光电探测器(opd)的进展,重点介绍了材料物理原理、结构-性能关系和应用驱动优化。聚合方法的创新使高区域规整性和环保生产成为可能。关键结构参数-分子量,区域规则和侧链拓扑-被剖析,策略性地定制分子量/区域规则和烷基链优化电荷传输和形态。双供体/受体混合、溶剂工程和后处理策略进一步提高了器件性能,实现了OSCs的高效率和opd的比检出率超过1014 Jones。光电倍增机制和光谱工程实现了超高响应率(EQE bbb707000%)和窄带探测。面向应用的设计,包括内在可拉伸的全聚合物系统和半透明架构,突出了p3at在可穿戴电子产品和建筑集成光伏方面的多功能性。未来的方向强调真正的绿色溶剂、简化的受体和机器学习引导的材料设计,以推进商业化。通过将材料创新与可扩展工艺相结合,p3at及其同类产品为下一代光电子、平衡性能、稳定性和环境影响提供了一条可持续发展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-effective poly(3-alkylthiophene)-based organic photovoltaics: advancing solar energy conversion and photodetection technologies.

Poly(3-alkylthiophene)s (P3ATs), particularly poly(3-hexylthiophene) are cornerstone materials for organic photovoltaics, bridging efficiency, scalability, and solution processability. This article systematically outlines advancements in P3AT-based organic solar cells (OSCs) and photodetectors (OPDs), focusing on materials physics principles, structure-property relationships, and application-driven optimization. Innovations in polymerization methods enable high regioregularity and eco-friendly production. Critical structural parameters-molecular weight, regioregularity, and side-chain topology-are dissected, with strategically tailored molecular weight/regioregularity and alkyl chains optimizing charge transport and morphology. Dual donor/acceptor blending, solvent engineering, and post-processing strategies further enhance device performance, achieving high efficiency for OSCs and specific detectivities exceeding 1014 Jones for OPDs. Photomultiplication mechanisms and spectral engineering enable ultrahigh responsivity (EQE >770 000%) and narrowband detection. Application-oriented designs, including intrinsically stretchable all-polymer systems and semi-transparent architectures, highlight P3ATs' versatility in wearable electronics and building-integrated photovoltaics. Future directions emphasize truly green solvents, simplified acceptors, and machine learning-guided material design to advance commercialization. By synergizing material innovation with scalable processing, P3ATs and their close variants offer a sustainable pathway for next-generation optoelectronics, balancing performance, stability, and environmental impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信