排水沟(“热点”)和风暴(“热时刻”)定义了陆地到海洋的水生连续体的水生温室气体(CO2, CH4, N2O)排放

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Naomi S. Wells, Mustefa Yasin Reshid, Karl Hennig, Matthew Hipsey, Peisheng Huang, Bradley D. Eyre
{"title":"排水沟(“热点”)和风暴(“热时刻”)定义了陆地到海洋的水生连续体的水生温室气体(CO2, CH4, N2O)排放","authors":"Naomi S. Wells,&nbsp;Mustefa Yasin Reshid,&nbsp;Karl Hennig,&nbsp;Matthew Hipsey,&nbsp;Peisheng Huang,&nbsp;Bradley D. Eyre","doi":"10.1029/2024GL113326","DOIUrl":null,"url":null,"abstract":"<p>Humans are altering coastal regions directly (land-use, drainage) and indirectly (climate change). Alterations potentially create positive climate feedback loops by enhancing production and emission of aquatic greenhouse gases (GHGs) CO<sub>2</sub>, N<sub>2</sub>O, and CH<sub>4</sub>. We tested this hypothesis by measuring dissolved CO<sub>2</sub>, N<sub>2</sub>O, and CH<sub>4</sub> concentrations across the anthropogenic aquatic continuum (farm ponds, ditches, irrigation drains, streams, tidal rivers, and estuaries) and continuously during a winter storm. Combining measurements with hydrodynamic modeling enabled us to parameterize physical gas transfer uncertainties, revealing artificial waterways contributed disproportionately to emissions. Ditches and drains cover 5% of water surface area but produced &gt;50% of emissions (2–11 Mmol d<sup>−1</sup> CO<sub>2</sub>-equivalents). But storms inverted this pattern by increasing estuary emissions 16-fold (5.0 Mmol d<sup>−1</sup> CO<sub>2</sub>-equivalent), suggesting storm patterns could control both sources and magnitudes of aquatic GHG emissions. Findings show overlooked artificial drains and hard-to-measure storms will increasingly define the aquatic offsets of landscape carbon budgets.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 15","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113326","citationCount":"0","resultStr":"{\"title\":\"Drainage Ditches (“Hot Spots”) and Storms (“Hot Moments”) Define Aquatic Greenhouse Gas (CO2, CH4, N2O) Emissions From the Land-to-Ocean Aquatic Continuum\",\"authors\":\"Naomi S. Wells,&nbsp;Mustefa Yasin Reshid,&nbsp;Karl Hennig,&nbsp;Matthew Hipsey,&nbsp;Peisheng Huang,&nbsp;Bradley D. Eyre\",\"doi\":\"10.1029/2024GL113326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Humans are altering coastal regions directly (land-use, drainage) and indirectly (climate change). Alterations potentially create positive climate feedback loops by enhancing production and emission of aquatic greenhouse gases (GHGs) CO<sub>2</sub>, N<sub>2</sub>O, and CH<sub>4</sub>. We tested this hypothesis by measuring dissolved CO<sub>2</sub>, N<sub>2</sub>O, and CH<sub>4</sub> concentrations across the anthropogenic aquatic continuum (farm ponds, ditches, irrigation drains, streams, tidal rivers, and estuaries) and continuously during a winter storm. Combining measurements with hydrodynamic modeling enabled us to parameterize physical gas transfer uncertainties, revealing artificial waterways contributed disproportionately to emissions. Ditches and drains cover 5% of water surface area but produced &gt;50% of emissions (2–11 Mmol d<sup>−1</sup> CO<sub>2</sub>-equivalents). But storms inverted this pattern by increasing estuary emissions 16-fold (5.0 Mmol d<sup>−1</sup> CO<sub>2</sub>-equivalent), suggesting storm patterns could control both sources and magnitudes of aquatic GHG emissions. Findings show overlooked artificial drains and hard-to-measure storms will increasingly define the aquatic offsets of landscape carbon budgets.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 15\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113326\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113326\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113326","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人类正在直接(土地利用、排水)和间接(气候变化)改变沿海地区。气候变化可能通过增加水生温室气体(ghg) CO2、N2O和CH4的产生和排放而形成积极的气候反馈循环。我们通过在冬季风暴期间连续测量人为水生连续体(农场池塘、沟渠、灌溉排水沟、溪流、潮汐河和河口)中溶解的CO2、N2O和CH4浓度来验证这一假设。将测量与水动力学建模相结合,使我们能够参数化物理气体传递的不确定性,揭示人工水道对排放的贡献不成比例。沟渠和排水沟覆盖了5%的水面面积,但产生了50%的排放量(2-11 Mmol d - 1二氧化碳当量)。但风暴通过使河口排放增加16倍(5.0 Mmol d - 1 co2当量)而逆转了这一模式,表明风暴模式可以控制水生温室气体排放的来源和大小。研究结果表明,被忽视的人工排水沟和难以测量的风暴将越来越多地决定景观碳预算的水生抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drainage Ditches (“Hot Spots”) and Storms (“Hot Moments”) Define Aquatic Greenhouse Gas (CO2, CH4, N2O) Emissions From the Land-to-Ocean Aquatic Continuum

Drainage Ditches (“Hot Spots”) and Storms (“Hot Moments”) Define Aquatic Greenhouse Gas (CO2, CH4, N2O) Emissions From the Land-to-Ocean Aquatic Continuum

Humans are altering coastal regions directly (land-use, drainage) and indirectly (climate change). Alterations potentially create positive climate feedback loops by enhancing production and emission of aquatic greenhouse gases (GHGs) CO2, N2O, and CH4. We tested this hypothesis by measuring dissolved CO2, N2O, and CH4 concentrations across the anthropogenic aquatic continuum (farm ponds, ditches, irrigation drains, streams, tidal rivers, and estuaries) and continuously during a winter storm. Combining measurements with hydrodynamic modeling enabled us to parameterize physical gas transfer uncertainties, revealing artificial waterways contributed disproportionately to emissions. Ditches and drains cover 5% of water surface area but produced >50% of emissions (2–11 Mmol d−1 CO2-equivalents). But storms inverted this pattern by increasing estuary emissions 16-fold (5.0 Mmol d−1 CO2-equivalent), suggesting storm patterns could control both sources and magnitudes of aquatic GHG emissions. Findings show overlooked artificial drains and hard-to-measure storms will increasingly define the aquatic offsets of landscape carbon budgets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信