Silvana Hof-Michel, Belén Olga Ferrando Hernandez, Andreas Vilcinskas, Anika E. Wagner
{"title":"姜黄素诱导果蝇寿命、基因表达和代谢的跨代和性别特异性影响","authors":"Silvana Hof-Michel, Belén Olga Ferrando Hernandez, Andreas Vilcinskas, Anika E. Wagner","doi":"10.1002/biof.70039","DOIUrl":null,"url":null,"abstract":"<p>Curcumin is a bioactive compound found in turmeric (<i>Curcuma longa</i>) and is widely recognized for its health-promoting effects, including anti-inflammatory, antioxidant, and anti-carcinogenic properties. It can also mediate epigenetic effects by inhibiting histone acetylases (HATs) and deacetylases (HDACs) but the transgenerational context has not been studied in detail. Here, we used the fruit fly (<i>Drosophila melanogaster</i>) as a model organism to determine the epigenetic effects of 0.1% and 1% (w/v) curcumin, which have been shown to promote the health and prolong the lifespan of fruit flies. Both concentrations were found to significantly increase lifespan and climbing activity in male and female flies, but changes in HAT/HDAC gene expression and metabolism were sex-specific. Unexpectedly, the F1 offspring of curcumin-treated parental flies showed a significant reduction in lifespan that was also sex-specific, as well as sex-specific and dose-dependent transgenerational changes in HAT/HDAC gene expression and metabolism. These results show that curcumin's beneficial effects in the parental generation are followed by deleterious effects in the offspring, highlighting the need to further investigate the potential transgenerational effects of nutrients and bioactive compounds that are used as dietary supplements for humans.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 4","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.70039","citationCount":"0","resultStr":"{\"title\":\"Curcumin Induces Transgenerational and Sex-Specific Effects on Lifespan, Gene Expression, and Metabolism in the Fruit Fly Drosophila melanogaster\",\"authors\":\"Silvana Hof-Michel, Belén Olga Ferrando Hernandez, Andreas Vilcinskas, Anika E. Wagner\",\"doi\":\"10.1002/biof.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Curcumin is a bioactive compound found in turmeric (<i>Curcuma longa</i>) and is widely recognized for its health-promoting effects, including anti-inflammatory, antioxidant, and anti-carcinogenic properties. It can also mediate epigenetic effects by inhibiting histone acetylases (HATs) and deacetylases (HDACs) but the transgenerational context has not been studied in detail. Here, we used the fruit fly (<i>Drosophila melanogaster</i>) as a model organism to determine the epigenetic effects of 0.1% and 1% (w/v) curcumin, which have been shown to promote the health and prolong the lifespan of fruit flies. Both concentrations were found to significantly increase lifespan and climbing activity in male and female flies, but changes in HAT/HDAC gene expression and metabolism were sex-specific. Unexpectedly, the F1 offspring of curcumin-treated parental flies showed a significant reduction in lifespan that was also sex-specific, as well as sex-specific and dose-dependent transgenerational changes in HAT/HDAC gene expression and metabolism. These results show that curcumin's beneficial effects in the parental generation are followed by deleterious effects in the offspring, highlighting the need to further investigate the potential transgenerational effects of nutrients and bioactive compounds that are used as dietary supplements for humans.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://iubmb.onlinelibrary.wiley.com/doi/10.1002/biof.70039\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://iubmb.onlinelibrary.wiley.com/doi/10.1002/biof.70039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Curcumin Induces Transgenerational and Sex-Specific Effects on Lifespan, Gene Expression, and Metabolism in the Fruit Fly Drosophila melanogaster
Curcumin is a bioactive compound found in turmeric (Curcuma longa) and is widely recognized for its health-promoting effects, including anti-inflammatory, antioxidant, and anti-carcinogenic properties. It can also mediate epigenetic effects by inhibiting histone acetylases (HATs) and deacetylases (HDACs) but the transgenerational context has not been studied in detail. Here, we used the fruit fly (Drosophila melanogaster) as a model organism to determine the epigenetic effects of 0.1% and 1% (w/v) curcumin, which have been shown to promote the health and prolong the lifespan of fruit flies. Both concentrations were found to significantly increase lifespan and climbing activity in male and female flies, but changes in HAT/HDAC gene expression and metabolism were sex-specific. Unexpectedly, the F1 offspring of curcumin-treated parental flies showed a significant reduction in lifespan that was also sex-specific, as well as sex-specific and dose-dependent transgenerational changes in HAT/HDAC gene expression and metabolism. These results show that curcumin's beneficial effects in the parental generation are followed by deleterious effects in the offspring, highlighting the need to further investigate the potential transgenerational effects of nutrients and bioactive compounds that are used as dietary supplements for humans.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.