线性和指数集成电荷泵的比较与设计

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Masoud Askariraad;Stefano Gregori
{"title":"线性和指数集成电荷泵的比较与设计","authors":"Masoud Askariraad;Stefano Gregori","doi":"10.1109/OJCAS.2025.3583268","DOIUrl":null,"url":null,"abstract":"This paper presents static and dynamic models for linear and exponential integrated charge pumps in both step-up and step-down modes. The static models are used to compare the slow-switching and fast-switching output resistance of various configurations, considering optimized and non-optimized capacitors and switches. In the dynamic models, the self-loading capacitance is determined using a simpler approach than previous works, allowing for a more straightforward comparison of the start-up time and charging efficiency. To highlight the differences between linear and exponential charge pumps, the working voltages of capacitors and switches are calculated, with these expressions guiding the selection of the most appropriate devices for each configuration. Additionally, parasitic capacitances and leakage currents are modeled and analyzed across the circuit configurations, and their impact on overall efficiency is assessed. The procedure for optimally sizing capacitors and switches using different device types is then discussed. Finally, two design examples in 65-nm CMOS technology are presented to validate the models, demonstrate design procedures, and highlight the advantages and limitations of practical implementations of each circuit.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"6 ","pages":"295-312"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106932","citationCount":"0","resultStr":"{\"title\":\"Comparison and Design of Linear and Exponential Integrated Charge Pumps\",\"authors\":\"Masoud Askariraad;Stefano Gregori\",\"doi\":\"10.1109/OJCAS.2025.3583268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents static and dynamic models for linear and exponential integrated charge pumps in both step-up and step-down modes. The static models are used to compare the slow-switching and fast-switching output resistance of various configurations, considering optimized and non-optimized capacitors and switches. In the dynamic models, the self-loading capacitance is determined using a simpler approach than previous works, allowing for a more straightforward comparison of the start-up time and charging efficiency. To highlight the differences between linear and exponential charge pumps, the working voltages of capacitors and switches are calculated, with these expressions guiding the selection of the most appropriate devices for each configuration. Additionally, parasitic capacitances and leakage currents are modeled and analyzed across the circuit configurations, and their impact on overall efficiency is assessed. The procedure for optimally sizing capacitors and switches using different device types is then discussed. Finally, two design examples in 65-nm CMOS technology are presented to validate the models, demonstrate design procedures, and highlight the advantages and limitations of practical implementations of each circuit.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":\"6 \",\"pages\":\"295-312\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106932\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11106932/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11106932/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了线性和指数集成电荷泵在升压和降压两种模式下的静态和动态模型。静态模型用于比较各种配置的慢开关和快开关输出电阻,考虑优化和非优化的电容器和开关。在动态模型中,自加载电容的确定方法比以前的工作更简单,可以更直接地比较启动时间和充电效率。为了突出线性和指数电荷泵之间的差异,计算了电容器和开关的工作电压,并用这些表达式指导每种配置选择最合适的器件。此外,对整个电路配置中的寄生电容和漏电流进行了建模和分析,并评估了它们对整体效率的影响。然后讨论了使用不同器件类型的电容器和开关的最佳尺寸的过程。最后,给出了两个65纳米CMOS技术的设计实例来验证模型,演示设计过程,并突出了每个电路实际实现的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison and Design of Linear and Exponential Integrated Charge Pumps
This paper presents static and dynamic models for linear and exponential integrated charge pumps in both step-up and step-down modes. The static models are used to compare the slow-switching and fast-switching output resistance of various configurations, considering optimized and non-optimized capacitors and switches. In the dynamic models, the self-loading capacitance is determined using a simpler approach than previous works, allowing for a more straightforward comparison of the start-up time and charging efficiency. To highlight the differences between linear and exponential charge pumps, the working voltages of capacitors and switches are calculated, with these expressions guiding the selection of the most appropriate devices for each configuration. Additionally, parasitic capacitances and leakage currents are modeled and analyzed across the circuit configurations, and their impact on overall efficiency is assessed. The procedure for optimally sizing capacitors and switches using different device types is then discussed. Finally, two design examples in 65-nm CMOS technology are presented to validate the models, demonstrate design procedures, and highlight the advantages and limitations of practical implementations of each circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信