{"title":"计算网络中资源分配与任务调度的分解多目标狼群算法","authors":"Lijuan Wu;Li Lv;Jeng-Shyang Pan;Hui Wang;Ivan Lee","doi":"10.1109/JSEN.2025.3581619","DOIUrl":null,"url":null,"abstract":"In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stations is constructed, and a decomposed multiobjective wolf pack algorithm (MOWPA) is proposed to jointly optimize resource allocation and task scheduling. The uplink of the network uses NOMA technology, which allows multiple users to share the same subchannel and greatly improves the efficiency of spectrum utilization. The introduction of wireless charging technology at the base station ensures that users can complete their computing tasks without interruption and reduces maintenance costs. In the algorithm design, the decomposition strategy is introduced into the MOWPA to screen the initial population by polynomial mutation operator and differential evolution operator to improve the diversity of the initial population. To help the algorithm escape from local optimum, the mutation operator is introduced to generate new elements, so that the population can explore a wider solution space. The experimental results show that when the number of users reaches 40, the algorithm achieves average improvements of over 22.47%, 27.82%, and 25.58% in computing delay, energy consumption, and cost, respectively. Compared with the other 10 algorithms, it significantly improves the user experience and resource utilization.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 15","pages":"30005-30019"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposed Multiobjective Wolf Pack Algorithm for Resource Allocation and Task Scheduling in Computing Networks\",\"authors\":\"Lijuan Wu;Li Lv;Jeng-Shyang Pan;Hui Wang;Ivan Lee\",\"doi\":\"10.1109/JSEN.2025.3581619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stations is constructed, and a decomposed multiobjective wolf pack algorithm (MOWPA) is proposed to jointly optimize resource allocation and task scheduling. The uplink of the network uses NOMA technology, which allows multiple users to share the same subchannel and greatly improves the efficiency of spectrum utilization. The introduction of wireless charging technology at the base station ensures that users can complete their computing tasks without interruption and reduces maintenance costs. In the algorithm design, the decomposition strategy is introduced into the MOWPA to screen the initial population by polynomial mutation operator and differential evolution operator to improve the diversity of the initial population. To help the algorithm escape from local optimum, the mutation operator is introduced to generate new elements, so that the population can explore a wider solution space. The experimental results show that when the number of users reaches 40, the algorithm achieves average improvements of over 22.47%, 27.82%, and 25.58% in computing delay, energy consumption, and cost, respectively. Compared with the other 10 algorithms, it significantly improves the user experience and resource utilization.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 15\",\"pages\":\"30005-30019\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11053198/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11053198/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Decomposed Multiobjective Wolf Pack Algorithm for Resource Allocation and Task Scheduling in Computing Networks
In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stations is constructed, and a decomposed multiobjective wolf pack algorithm (MOWPA) is proposed to jointly optimize resource allocation and task scheduling. The uplink of the network uses NOMA technology, which allows multiple users to share the same subchannel and greatly improves the efficiency of spectrum utilization. The introduction of wireless charging technology at the base station ensures that users can complete their computing tasks without interruption and reduces maintenance costs. In the algorithm design, the decomposition strategy is introduced into the MOWPA to screen the initial population by polynomial mutation operator and differential evolution operator to improve the diversity of the initial population. To help the algorithm escape from local optimum, the mutation operator is introduced to generate new elements, so that the population can explore a wider solution space. The experimental results show that when the number of users reaches 40, the algorithm achieves average improvements of over 22.47%, 27.82%, and 25.58% in computing delay, energy consumption, and cost, respectively. Compared with the other 10 algorithms, it significantly improves the user experience and resource utilization.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice