电喷涂银纳米线与钌配合物红外热传感器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shah Fahad;Yuxuan Dong;Feng Jin;Ying Jin;Min Wang
{"title":"电喷涂银纳米线与钌配合物红外热传感器","authors":"Shah Fahad;Yuxuan Dong;Feng Jin;Ying Jin;Min Wang","doi":"10.1109/JSEN.2025.3580763","DOIUrl":null,"url":null,"abstract":"Thermometric sensors are widely used in industrial and medical applications. Temperature-dependent phosphors are progressively chosen materials in thermal sensors yet posing major constraints due to relatively low fluorescence emission. Plasmonic enhancements are sparking alternatives in strengthening light-matter interaction and energetically revamping the functionalities of phosphors with real potencies. Herein, we proposed an infrared (IR) thermal sensor using a highly temperature-sensitive phosphor. For the first time, silver nanowires (AgNWs) were employed to embed in ruthenium complex temperature sensitive paint (TSP) with a matrix of poly(vinylidene fluoride) (PVDF) to build plasmonic enhanced fluorescent thermal sensor. Upon optimizing the concentration of AgNWs incorporation, the electrosprayed AgNWs@Ru-PVDF film demonstrated an increase of an order of magnitude in fluorescence intensity. Besides, the thermal sensor integrated with such film delivered a temperature sensitivity of 4.01% <inline-formula> <tex-math>${K}^{-{1}}$ </tex-math></inline-formula> at room temperature and a detectivity <inline-formula> <tex-math>${D} ^{\\ast }$ </tex-math></inline-formula> of <inline-formula> <tex-math>$7.82\\times 10^{{7}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula><inline-formula> <tex-math>${Hz}^{{1}/{2}}$ </tex-math></inline-formula>/W. Compared with control group without AgNWs addition, an 18% enhancement in temperature sensitivity, 29% enhancement in <inline-formula> <tex-math>${D} ^{\\ast }$ </tex-math></inline-formula>, a 30% reduction in response time, and a 142% increase in fluorescence intensity were successfully obtained, which suggests its promising in thermal imaging application.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 15","pages":"28030-28037"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared Thermal Sensor Using Electrosprayed Silver Nanowires and Ruthenium Complex\",\"authors\":\"Shah Fahad;Yuxuan Dong;Feng Jin;Ying Jin;Min Wang\",\"doi\":\"10.1109/JSEN.2025.3580763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermometric sensors are widely used in industrial and medical applications. Temperature-dependent phosphors are progressively chosen materials in thermal sensors yet posing major constraints due to relatively low fluorescence emission. Plasmonic enhancements are sparking alternatives in strengthening light-matter interaction and energetically revamping the functionalities of phosphors with real potencies. Herein, we proposed an infrared (IR) thermal sensor using a highly temperature-sensitive phosphor. For the first time, silver nanowires (AgNWs) were employed to embed in ruthenium complex temperature sensitive paint (TSP) with a matrix of poly(vinylidene fluoride) (PVDF) to build plasmonic enhanced fluorescent thermal sensor. Upon optimizing the concentration of AgNWs incorporation, the electrosprayed AgNWs@Ru-PVDF film demonstrated an increase of an order of magnitude in fluorescence intensity. Besides, the thermal sensor integrated with such film delivered a temperature sensitivity of 4.01% <inline-formula> <tex-math>${K}^{-{1}}$ </tex-math></inline-formula> at room temperature and a detectivity <inline-formula> <tex-math>${D} ^{\\\\ast }$ </tex-math></inline-formula> of <inline-formula> <tex-math>$7.82\\\\times 10^{{7}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula><inline-formula> <tex-math>${Hz}^{{1}/{2}}$ </tex-math></inline-formula>/W. Compared with control group without AgNWs addition, an 18% enhancement in temperature sensitivity, 29% enhancement in <inline-formula> <tex-math>${D} ^{\\\\ast }$ </tex-math></inline-formula>, a 30% reduction in response time, and a 142% increase in fluorescence intensity were successfully obtained, which suggests its promising in thermal imaging application.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 15\",\"pages\":\"28030-28037\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11049870/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11049870/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

温度传感器广泛应用于工业和医疗领域。温度依赖荧光粉是热传感器中逐渐选择的材料,但由于相对较低的荧光发射而构成主要限制。等离子体增强在加强光-物质相互作用和以实际效力大力改造荧光粉的功能方面引发了替代方案。在此,我们提出了一种红外(IR)热传感器使用高度温度敏感的荧光粉。首次将银纳米线(AgNWs)嵌入以聚偏氟乙烯(PVDF)为基体的钌复合温敏涂料(TSP)中,构建等离子体增强荧光热传感器。优化AgNWs掺入浓度后,电喷涂AgNWs@Ru-PVDF膜的荧光强度提高了一个数量级。此外,集成该薄膜的热传感器在室温下的温度灵敏度为4.01% ${K}^{-{1}}$,探测率${D} ^{\ast}$为$7.82\ × 10^{{7}}$ cm $\cdot $ ${Hz}^{{1}/{2}}$ /W。与未添加AgNWs的对照组相比,温度灵敏度提高了18%,${D} ^{\ast}$提高了29%,响应时间缩短了30%,荧光强度提高了142%,具有较好的热成像应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared Thermal Sensor Using Electrosprayed Silver Nanowires and Ruthenium Complex
Thermometric sensors are widely used in industrial and medical applications. Temperature-dependent phosphors are progressively chosen materials in thermal sensors yet posing major constraints due to relatively low fluorescence emission. Plasmonic enhancements are sparking alternatives in strengthening light-matter interaction and energetically revamping the functionalities of phosphors with real potencies. Herein, we proposed an infrared (IR) thermal sensor using a highly temperature-sensitive phosphor. For the first time, silver nanowires (AgNWs) were employed to embed in ruthenium complex temperature sensitive paint (TSP) with a matrix of poly(vinylidene fluoride) (PVDF) to build plasmonic enhanced fluorescent thermal sensor. Upon optimizing the concentration of AgNWs incorporation, the electrosprayed AgNWs@Ru-PVDF film demonstrated an increase of an order of magnitude in fluorescence intensity. Besides, the thermal sensor integrated with such film delivered a temperature sensitivity of 4.01% ${K}^{-{1}}$ at room temperature and a detectivity ${D} ^{\ast }$ of $7.82\times 10^{{7}}$ cm $\cdot $ ${Hz}^{{1}/{2}}$ /W. Compared with control group without AgNWs addition, an 18% enhancement in temperature sensitivity, 29% enhancement in ${D} ^{\ast }$ , a 30% reduction in response time, and a 142% increase in fluorescence intensity were successfully obtained, which suggests its promising in thermal imaging application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信