RoboTuni:一种提高机械臂路径精度的智能伺服整定方法

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bo-Ru Tseng;Shih-Hsien Yang;Ching-Hung Lee
{"title":"RoboTuni:一种提高机械臂路径精度的智能伺服整定方法","authors":"Bo-Ru Tseng;Shih-Hsien Yang;Ching-Hung Lee","doi":"10.1109/JSEN.2025.3582409","DOIUrl":null,"url":null,"abstract":"This article proposes an intelligent diagnostic and servo-tuning approach for servo-mismatch issues of six-axis robotic manipulators to improve the dynamic path accuracy, referred to as the RoboTuni. At first, a virtual servo-drive system is developed to simulate and assess the servo-drive system’s performance. To diagnose servo mismatches, a 1-D convolutional neural network (1D-CNN) is adopted to analyze trajectory tracking errors and identify the corresponding poor performance servo axis. Subsequently, a Lagrange interpolation-based tuning method is proposed, enabling efficient parameter adjustments without requiring large datasets or extended convergence periods. Simulation and experimental results are introduced to demonstrate that the proposed approach significantly enhances the dynamic responses of the joint servo and improves the overall path precision of the system, including a 67.38% increase in mean path accuracy in circular motion and a 69.41% maximum path error reduction in linear motion of the Y-axis.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 15","pages":"29584-29596"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoboTuni: An Intelligent Servo-Tuning for Improving Path Accuracy in Robot Manipulators\",\"authors\":\"Bo-Ru Tseng;Shih-Hsien Yang;Ching-Hung Lee\",\"doi\":\"10.1109/JSEN.2025.3582409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an intelligent diagnostic and servo-tuning approach for servo-mismatch issues of six-axis robotic manipulators to improve the dynamic path accuracy, referred to as the RoboTuni. At first, a virtual servo-drive system is developed to simulate and assess the servo-drive system’s performance. To diagnose servo mismatches, a 1-D convolutional neural network (1D-CNN) is adopted to analyze trajectory tracking errors and identify the corresponding poor performance servo axis. Subsequently, a Lagrange interpolation-based tuning method is proposed, enabling efficient parameter adjustments without requiring large datasets or extended convergence periods. Simulation and experimental results are introduced to demonstrate that the proposed approach significantly enhances the dynamic responses of the joint servo and improves the overall path precision of the system, including a 67.38% increase in mean path accuracy in circular motion and a 69.41% maximum path error reduction in linear motion of the Y-axis.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 15\",\"pages\":\"29584-29596\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11059733/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11059733/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种针对六轴机器人伺服失配问题的智能诊断和伺服调谐方法,以提高动态路径精度,称为RoboTuni。首先,开发了一个虚拟伺服驱动系统,对伺服驱动系统的性能进行仿真和评估。为了诊断伺服不匹配,采用一维卷积神经网络(1D-CNN)对轨迹跟踪误差进行分析,识别出相应的性能较差的伺服轴。随后,提出了一种基于拉格朗日插值的调谐方法,在不需要大数据集或延长收敛周期的情况下实现了有效的参数调整。仿真和实验结果表明,该方法显著提高了关节伺服系统的动态响应,提高了系统的整体路径精度,其中圆周运动的平均路径精度提高了67.38%,y轴直线运动的最大路径误差降低了69.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RoboTuni: An Intelligent Servo-Tuning for Improving Path Accuracy in Robot Manipulators
This article proposes an intelligent diagnostic and servo-tuning approach for servo-mismatch issues of six-axis robotic manipulators to improve the dynamic path accuracy, referred to as the RoboTuni. At first, a virtual servo-drive system is developed to simulate and assess the servo-drive system’s performance. To diagnose servo mismatches, a 1-D convolutional neural network (1D-CNN) is adopted to analyze trajectory tracking errors and identify the corresponding poor performance servo axis. Subsequently, a Lagrange interpolation-based tuning method is proposed, enabling efficient parameter adjustments without requiring large datasets or extended convergence periods. Simulation and experimental results are introduced to demonstrate that the proposed approach significantly enhances the dynamic responses of the joint servo and improves the overall path precision of the system, including a 67.38% increase in mean path accuracy in circular motion and a 69.41% maximum path error reduction in linear motion of the Y-axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信