Mostafa Mohamed Okasha , Mohammed Qader Gubari , Hawzhen Fateh M. Ameen , Munawar Abbas , Muyassar Norberdiyeva , Wei Sin Koh , Ilyas Khan
{"title":"弹性变形boger混合纳米流体局部热非平衡对非达西化学反应流动影响的计算评估","authors":"Mostafa Mohamed Okasha , Mohammed Qader Gubari , Hawzhen Fateh M. Ameen , Munawar Abbas , Muyassar Norberdiyeva , Wei Sin Koh , Ilyas Khan","doi":"10.1016/j.padiff.2025.101260","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effects of velocity slip and local thermal non-equilibrium on the non-Darcy chemical convective flow of a Boger hybrid nanofluid across a sheet. The energy equation-based on local thermal non-equilibrium model provides outstanding heat transmission for solid and liquid phases. The two thermal distributions for the liquid and solid phases are basically used in this method. The hybrid nanoliquid (<em>SiC</em> − <em>C</em>o<sub>3</sub>O<sub>4</sub>/<em>DO</em>) flow model consist of nanoparticles of silicon carbide (<em>SiC</em>) and Cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) dissolved in diathermic oil. This model can be used in sectors of the economy where improved heat transfer is essential, like electronic cooling systems, automotive thermal systems, and energy-efficient heat exchangers. The concept is also applicable to the design of materials for use in aerospace applications, where it is necessary to precisely regulate the mechanical and thermal properties under conditions of high stress and temperature gradients. The Bvp4c method is used to numerically solve the model equation system once all relevant similarity variables have been decreased. Outcomes display that Boger hybrid nanofluid shows increase flow and decline the thermal and concentration distributions as increasing the solvent percent and Stefan blowing parameters values.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101260"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational assessment of local thermal non-equilibrium effects on non-darcy chemical reactive flow of boger hybrid nanofluid with elastic deformation\",\"authors\":\"Mostafa Mohamed Okasha , Mohammed Qader Gubari , Hawzhen Fateh M. Ameen , Munawar Abbas , Muyassar Norberdiyeva , Wei Sin Koh , Ilyas Khan\",\"doi\":\"10.1016/j.padiff.2025.101260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the effects of velocity slip and local thermal non-equilibrium on the non-Darcy chemical convective flow of a Boger hybrid nanofluid across a sheet. The energy equation-based on local thermal non-equilibrium model provides outstanding heat transmission for solid and liquid phases. The two thermal distributions for the liquid and solid phases are basically used in this method. The hybrid nanoliquid (<em>SiC</em> − <em>C</em>o<sub>3</sub>O<sub>4</sub>/<em>DO</em>) flow model consist of nanoparticles of silicon carbide (<em>SiC</em>) and Cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) dissolved in diathermic oil. This model can be used in sectors of the economy where improved heat transfer is essential, like electronic cooling systems, automotive thermal systems, and energy-efficient heat exchangers. The concept is also applicable to the design of materials for use in aerospace applications, where it is necessary to precisely regulate the mechanical and thermal properties under conditions of high stress and temperature gradients. The Bvp4c method is used to numerically solve the model equation system once all relevant similarity variables have been decreased. Outcomes display that Boger hybrid nanofluid shows increase flow and decline the thermal and concentration distributions as increasing the solvent percent and Stefan blowing parameters values.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Computational assessment of local thermal non-equilibrium effects on non-darcy chemical reactive flow of boger hybrid nanofluid with elastic deformation
This study examines the effects of velocity slip and local thermal non-equilibrium on the non-Darcy chemical convective flow of a Boger hybrid nanofluid across a sheet. The energy equation-based on local thermal non-equilibrium model provides outstanding heat transmission for solid and liquid phases. The two thermal distributions for the liquid and solid phases are basically used in this method. The hybrid nanoliquid (SiC − Co3O4/DO) flow model consist of nanoparticles of silicon carbide (SiC) and Cobalt oxide (Co3O4) dissolved in diathermic oil. This model can be used in sectors of the economy where improved heat transfer is essential, like electronic cooling systems, automotive thermal systems, and energy-efficient heat exchangers. The concept is also applicable to the design of materials for use in aerospace applications, where it is necessary to precisely regulate the mechanical and thermal properties under conditions of high stress and temperature gradients. The Bvp4c method is used to numerically solve the model equation system once all relevant similarity variables have been decreased. Outcomes display that Boger hybrid nanofluid shows increase flow and decline the thermal and concentration distributions as increasing the solvent percent and Stefan blowing parameters values.