弹性变形boger混合纳米流体局部热非平衡对非达西化学反应流动影响的计算评估

Q1 Mathematics
Mostafa Mohamed Okasha , Mohammed Qader Gubari , Hawzhen Fateh M. Ameen , Munawar Abbas , Muyassar Norberdiyeva , Wei Sin Koh , Ilyas Khan
{"title":"弹性变形boger混合纳米流体局部热非平衡对非达西化学反应流动影响的计算评估","authors":"Mostafa Mohamed Okasha ,&nbsp;Mohammed Qader Gubari ,&nbsp;Hawzhen Fateh M. Ameen ,&nbsp;Munawar Abbas ,&nbsp;Muyassar Norberdiyeva ,&nbsp;Wei Sin Koh ,&nbsp;Ilyas Khan","doi":"10.1016/j.padiff.2025.101260","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effects of velocity slip and local thermal non-equilibrium on the non-Darcy chemical convective flow of a Boger hybrid nanofluid across a sheet. The energy equation-based on local thermal non-equilibrium model provides outstanding heat transmission for solid and liquid phases. The two thermal distributions for the liquid and solid phases are basically used in this method. The hybrid nanoliquid (<em>SiC</em> − <em>C</em>o<sub>3</sub>O<sub>4</sub>/<em>DO</em>) flow model consist of nanoparticles of silicon carbide (<em>SiC</em>) and Cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) dissolved in diathermic oil. This model can be used in sectors of the economy where improved heat transfer is essential, like electronic cooling systems, automotive thermal systems, and energy-efficient heat exchangers. The concept is also applicable to the design of materials for use in aerospace applications, where it is necessary to precisely regulate the mechanical and thermal properties under conditions of high stress and temperature gradients. The Bvp4c method is used to numerically solve the model equation system once all relevant similarity variables have been decreased. Outcomes display that Boger hybrid nanofluid shows increase flow and decline the thermal and concentration distributions as increasing the solvent percent and Stefan blowing parameters values.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101260"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational assessment of local thermal non-equilibrium effects on non-darcy chemical reactive flow of boger hybrid nanofluid with elastic deformation\",\"authors\":\"Mostafa Mohamed Okasha ,&nbsp;Mohammed Qader Gubari ,&nbsp;Hawzhen Fateh M. Ameen ,&nbsp;Munawar Abbas ,&nbsp;Muyassar Norberdiyeva ,&nbsp;Wei Sin Koh ,&nbsp;Ilyas Khan\",\"doi\":\"10.1016/j.padiff.2025.101260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the effects of velocity slip and local thermal non-equilibrium on the non-Darcy chemical convective flow of a Boger hybrid nanofluid across a sheet. The energy equation-based on local thermal non-equilibrium model provides outstanding heat transmission for solid and liquid phases. The two thermal distributions for the liquid and solid phases are basically used in this method. The hybrid nanoliquid (<em>SiC</em> − <em>C</em>o<sub>3</sub>O<sub>4</sub>/<em>DO</em>) flow model consist of nanoparticles of silicon carbide (<em>SiC</em>) and Cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) dissolved in diathermic oil. This model can be used in sectors of the economy where improved heat transfer is essential, like electronic cooling systems, automotive thermal systems, and energy-efficient heat exchangers. The concept is also applicable to the design of materials for use in aerospace applications, where it is necessary to precisely regulate the mechanical and thermal properties under conditions of high stress and temperature gradients. The Bvp4c method is used to numerically solve the model equation system once all relevant similarity variables have been decreased. Outcomes display that Boger hybrid nanofluid shows increase flow and decline the thermal and concentration distributions as increasing the solvent percent and Stefan blowing parameters values.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了速度滑移和局部热不平衡对Boger混合纳米流体在薄片上的非达西化学对流的影响。基于局部热非平衡模型的能量方程为固、液相的传热提供了良好的条件。该方法基本采用液相和固相两种热分布。碳化硅(SiC)和氧化钴(Co3O4)纳米颗粒溶解在透热油中,形成了SiC−Co3O4/DO混合纳米流体流动模型。该模型可用于改善传热至关重要的经济部门,如电子冷却系统,汽车热系统和节能热交换器。该概念也适用于航空航天应用中使用的材料的设计,其中需要在高应力和温度梯度条件下精确调节机械和热性能。利用Bvp4c方法对模型方程系统进行数值求解。结果表明,随着溶剂含量和Stefan吹气参数的增加,Boger混合纳米流体的流量增大,热分布和浓度分布减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational assessment of local thermal non-equilibrium effects on non-darcy chemical reactive flow of boger hybrid nanofluid with elastic deformation

Computational assessment of local thermal non-equilibrium effects on non-darcy chemical reactive flow of boger hybrid nanofluid with elastic deformation
This study examines the effects of velocity slip and local thermal non-equilibrium on the non-Darcy chemical convective flow of a Boger hybrid nanofluid across a sheet. The energy equation-based on local thermal non-equilibrium model provides outstanding heat transmission for solid and liquid phases. The two thermal distributions for the liquid and solid phases are basically used in this method. The hybrid nanoliquid (SiCCo3O4/DO) flow model consist of nanoparticles of silicon carbide (SiC) and Cobalt oxide (Co3O4) dissolved in diathermic oil. This model can be used in sectors of the economy where improved heat transfer is essential, like electronic cooling systems, automotive thermal systems, and energy-efficient heat exchangers. The concept is also applicable to the design of materials for use in aerospace applications, where it is necessary to precisely regulate the mechanical and thermal properties under conditions of high stress and temperature gradients. The Bvp4c method is used to numerically solve the model equation system once all relevant similarity variables have been decreased. Outcomes display that Boger hybrid nanofluid shows increase flow and decline the thermal and concentration distributions as increasing the solvent percent and Stefan blowing parameters values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信