像差校正交叉切尔尼-特纳光谱仪系统的设计与标定

IF 2.5 3区 物理与天体物理 Q2 OPTICS
Xu Wang, Lirong Qiu, Weiqian Zhao, Han Cui
{"title":"像差校正交叉切尔尼-特纳光谱仪系统的设计与标定","authors":"Xu Wang,&nbsp;Lirong Qiu,&nbsp;Weiqian Zhao,&nbsp;Han Cui","doi":"10.1016/j.optcom.2025.132280","DOIUrl":null,"url":null,"abstract":"<div><div>Crossed Czerny–Turner (C–T) spectrometers are limited by significant aberrations due to large off–axis angles in spherical mirrors. A method is proposed to effectively reduce aberrations in portable crossed C–T spectrometers. The method optimizes grating position for field curvature correction, uses the Shafer equation to reduce coma across a wide spectral range, and employs a cylindrical lens for astigmatism correction by adjusting its tilt and wedge angles. The method significantly improves imaging quality, reducing spot width by 93.3 %. Additionally, a wavelength calibration model for the crossed C–T spectrometer was developed. This model employs an optimization fitting algorithm based on a sine–constrained least squares to accurately correct the optical system parameters. It achieves a wavelength calibration accuracy of 0.01 nm and a spectral resolution better than 3212 over a 200 nm range. This performance meets the requirements for detecting weak light signals in applications such as Raman spectroscopy and laser–induced breakdown spectroscopy (LIBS).</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"592 ","pages":"Article 132280"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and calibration of an aberration–corrected crossed Czerny–Turner spectrometer system\",\"authors\":\"Xu Wang,&nbsp;Lirong Qiu,&nbsp;Weiqian Zhao,&nbsp;Han Cui\",\"doi\":\"10.1016/j.optcom.2025.132280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crossed Czerny–Turner (C–T) spectrometers are limited by significant aberrations due to large off–axis angles in spherical mirrors. A method is proposed to effectively reduce aberrations in portable crossed C–T spectrometers. The method optimizes grating position for field curvature correction, uses the Shafer equation to reduce coma across a wide spectral range, and employs a cylindrical lens for astigmatism correction by adjusting its tilt and wedge angles. The method significantly improves imaging quality, reducing spot width by 93.3 %. Additionally, a wavelength calibration model for the crossed C–T spectrometer was developed. This model employs an optimization fitting algorithm based on a sine–constrained least squares to accurately correct the optical system parameters. It achieves a wavelength calibration accuracy of 0.01 nm and a spectral resolution better than 3212 over a 200 nm range. This performance meets the requirements for detecting weak light signals in applications such as Raman spectroscopy and laser–induced breakdown spectroscopy (LIBS).</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"592 \",\"pages\":\"Article 132280\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825008089\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825008089","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

交叉切尔尼-特纳(C-T)光谱仪受到球面反射镜大的离轴角造成的明显像差的限制。提出了一种有效降低便携式交叉C-T光谱仪像差的方法。该方法优化光栅位置进行场曲率校正,使用Shafer方程在宽光谱范围内减少彗差,并通过调整其倾斜角和楔角使用圆柱透镜进行像散校正。该方法显著提高了成像质量,使光斑宽度减小了93.3%。此外,建立了交叉C-T光谱仪的波长标定模型。该模型采用基于正弦约束最小二乘的优化拟合算法对光学系统参数进行精确校正。其波长校准精度为0.01 nm,在200 nm范围内的光谱分辨率优于3212。这种性能满足了在拉曼光谱和激光诱导击穿光谱(LIBS)等应用中检测弱光信号的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and calibration of an aberration–corrected crossed Czerny–Turner spectrometer system
Crossed Czerny–Turner (C–T) spectrometers are limited by significant aberrations due to large off–axis angles in spherical mirrors. A method is proposed to effectively reduce aberrations in portable crossed C–T spectrometers. The method optimizes grating position for field curvature correction, uses the Shafer equation to reduce coma across a wide spectral range, and employs a cylindrical lens for astigmatism correction by adjusting its tilt and wedge angles. The method significantly improves imaging quality, reducing spot width by 93.3 %. Additionally, a wavelength calibration model for the crossed C–T spectrometer was developed. This model employs an optimization fitting algorithm based on a sine–constrained least squares to accurately correct the optical system parameters. It achieves a wavelength calibration accuracy of 0.01 nm and a spectral resolution better than 3212 over a 200 nm range. This performance meets the requirements for detecting weak light signals in applications such as Raman spectroscopy and laser–induced breakdown spectroscopy (LIBS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信