振荡压烧结TiC陶瓷的致密化机理及力学性能

IF 4.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qiang Zhang , Tianbin Zhu , Yuqi Su , Heng Wang , Xiong Liang , Yawei Li , Shaobai Sang , Zhipeng Xie
{"title":"振荡压烧结TiC陶瓷的致密化机理及力学性能","authors":"Qiang Zhang ,&nbsp;Tianbin Zhu ,&nbsp;Yuqi Su ,&nbsp;Heng Wang ,&nbsp;Xiong Liang ,&nbsp;Yawei Li ,&nbsp;Shaobai Sang ,&nbsp;Zhipeng Xie","doi":"10.1016/j.ijrmhm.2025.107357","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium carbide (TiC) ceramics were fabricated via oscillatory pressure sintering (OPS) at 1030–1230 °C, with sintering kinetics systematically analyzed through a high-temperature creep model. The analysis revealed an apparent activation energy of 375.60 kJ/mol under a stress exponent of <em>n</em> = 1, and identified temperature-dependent densification mechanisms: at 1030 °C, densification progressed from particle rearrangement to grain boundary sliding and dislocation glide-climb; at 1080 °C, grain boundary sliding and viscous flow/grain boundary diffusion dominated after initial rearrangement; at 1130 °C, dislocation glide-climb prevailed following particle rearrangement. The maximum densification rate occurred at 1130 °C. Optimal mechanical properties achieved at 1230 °C within the range of 1030 to 1230 °C included a Vickers hardness of 19.7 GPa, flexural strength of 723 MPa, and Young's modulus of 403 GPa. These findings elucidate the correlation between sintering temperature, microstructural evolution, and densification behavior during OPS, thereby providing meaningful insights for the efficient fabrication of TiC ceramics.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"133 ","pages":"Article 107357"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Densification mechanisms and mechanical properties of TiC ceramics prepared via oscillatory pressure sintering\",\"authors\":\"Qiang Zhang ,&nbsp;Tianbin Zhu ,&nbsp;Yuqi Su ,&nbsp;Heng Wang ,&nbsp;Xiong Liang ,&nbsp;Yawei Li ,&nbsp;Shaobai Sang ,&nbsp;Zhipeng Xie\",\"doi\":\"10.1016/j.ijrmhm.2025.107357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Titanium carbide (TiC) ceramics were fabricated via oscillatory pressure sintering (OPS) at 1030–1230 °C, with sintering kinetics systematically analyzed through a high-temperature creep model. The analysis revealed an apparent activation energy of 375.60 kJ/mol under a stress exponent of <em>n</em> = 1, and identified temperature-dependent densification mechanisms: at 1030 °C, densification progressed from particle rearrangement to grain boundary sliding and dislocation glide-climb; at 1080 °C, grain boundary sliding and viscous flow/grain boundary diffusion dominated after initial rearrangement; at 1130 °C, dislocation glide-climb prevailed following particle rearrangement. The maximum densification rate occurred at 1130 °C. Optimal mechanical properties achieved at 1230 °C within the range of 1030 to 1230 °C included a Vickers hardness of 19.7 GPa, flexural strength of 723 MPa, and Young's modulus of 403 GPa. These findings elucidate the correlation between sintering temperature, microstructural evolution, and densification behavior during OPS, thereby providing meaningful insights for the efficient fabrication of TiC ceramics.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"133 \",\"pages\":\"Article 107357\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436825003221\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825003221","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用1030 ~ 1230℃振荡压力烧结(OPS)法制备了碳化钛(TiC)陶瓷,并通过高温蠕变模型系统分析了烧结动力学。应力指数为n = 1时,合金的表观活化能为375.60 kJ/mol,并确定了温度依赖的致密化机制:在1030℃时,致密化过程从颗粒重排到晶界滑动和位错滑升;1080℃时,初始重排后以晶界滑动和黏性流动/晶界扩散为主;1130℃时,位错滑移-爬升发生在粒子重排之后。最大致密化速率发生在1130℃。在1030至1230℃范围内,在1230℃下获得的最佳力学性能包括维氏硬度为19.7 GPa,抗弯强度为723 MPa,杨氏模量为403 GPa。这些发现阐明了OPS过程中烧结温度、显微组织演变和致密化行为之间的关系,从而为高效制备TiC陶瓷提供了有意义的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Densification mechanisms and mechanical properties of TiC ceramics prepared via oscillatory pressure sintering
Titanium carbide (TiC) ceramics were fabricated via oscillatory pressure sintering (OPS) at 1030–1230 °C, with sintering kinetics systematically analyzed through a high-temperature creep model. The analysis revealed an apparent activation energy of 375.60 kJ/mol under a stress exponent of n = 1, and identified temperature-dependent densification mechanisms: at 1030 °C, densification progressed from particle rearrangement to grain boundary sliding and dislocation glide-climb; at 1080 °C, grain boundary sliding and viscous flow/grain boundary diffusion dominated after initial rearrangement; at 1130 °C, dislocation glide-climb prevailed following particle rearrangement. The maximum densification rate occurred at 1130 °C. Optimal mechanical properties achieved at 1230 °C within the range of 1030 to 1230 °C included a Vickers hardness of 19.7 GPa, flexural strength of 723 MPa, and Young's modulus of 403 GPa. These findings elucidate the correlation between sintering temperature, microstructural evolution, and densification behavior during OPS, thereby providing meaningful insights for the efficient fabrication of TiC ceramics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信