{"title":"宿主内病毒动力学模型的结构和实际可识别性综述","authors":"Necibe Tuncer , Maia Martcheva , Stanca M. Ciupe","doi":"10.1016/j.coisb.2025.100552","DOIUrl":null,"url":null,"abstract":"<div><div>Within-host mechanistic mathematical models of virus dynamics described by ordinary differential equations are most useful when linked to empirical data. The main challenge in estimating parameters from typically available, noisy data arises from the intrinsic parameter correlations induced by model structure. As a result, the optimization problem, which fits parameters by minimizing the distance between the model and the data, may admit infinitely many solutions. These challenges can be elucidated through the study of structural and practical identifiability of the proposed model. In this article, we review existing methods for the structural and practical identifiability of the basic within-host model of viral dynamics and provide guidelines for improving unidentifiability. We discuss the challenges and new developments in extending these techniques to nonordinary within-host differential equation models (delay, partial, and stochastic) and stress the importance of using practical identifiability results to guide optimal experimental design.</div></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"42 ","pages":"Article 100552"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and practical identifiability of within-host models of virus dynamics—A review\",\"authors\":\"Necibe Tuncer , Maia Martcheva , Stanca M. Ciupe\",\"doi\":\"10.1016/j.coisb.2025.100552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Within-host mechanistic mathematical models of virus dynamics described by ordinary differential equations are most useful when linked to empirical data. The main challenge in estimating parameters from typically available, noisy data arises from the intrinsic parameter correlations induced by model structure. As a result, the optimization problem, which fits parameters by minimizing the distance between the model and the data, may admit infinitely many solutions. These challenges can be elucidated through the study of structural and practical identifiability of the proposed model. In this article, we review existing methods for the structural and practical identifiability of the basic within-host model of viral dynamics and provide guidelines for improving unidentifiability. We discuss the challenges and new developments in extending these techniques to nonordinary within-host differential equation models (delay, partial, and stochastic) and stress the importance of using practical identifiability results to guide optimal experimental design.</div></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"42 \",\"pages\":\"Article 100552\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310025000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310025000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural and practical identifiability of within-host models of virus dynamics—A review
Within-host mechanistic mathematical models of virus dynamics described by ordinary differential equations are most useful when linked to empirical data. The main challenge in estimating parameters from typically available, noisy data arises from the intrinsic parameter correlations induced by model structure. As a result, the optimization problem, which fits parameters by minimizing the distance between the model and the data, may admit infinitely many solutions. These challenges can be elucidated through the study of structural and practical identifiability of the proposed model. In this article, we review existing methods for the structural and practical identifiability of the basic within-host model of viral dynamics and provide guidelines for improving unidentifiability. We discuss the challenges and new developments in extending these techniques to nonordinary within-host differential equation models (delay, partial, and stochastic) and stress the importance of using practical identifiability results to guide optimal experimental design.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution