Ni 3ge中能量滤波诱导的超高热电功率因数

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fabian Garmroudi, Simone Di Cataldo, Michael Parzer, Jennifer Coulter, Yutaka Iwasaki, Matthias Grasser, Simon Stockinger, Stephan Pázmán, Sandra Witzmann, Alexander Riss, Herwig Michor, Raimund Podloucky, Sergii Khmelevskyi, Antoine Georges, Karsten Held, Takao Mori, Ernst Bauer, Andrej Pustogow
{"title":"Ni 3ge中能量滤波诱导的超高热电功率因数","authors":"Fabian Garmroudi,&nbsp;Simone Di Cataldo,&nbsp;Michael Parzer,&nbsp;Jennifer Coulter,&nbsp;Yutaka Iwasaki,&nbsp;Matthias Grasser,&nbsp;Simon Stockinger,&nbsp;Stephan Pázmán,&nbsp;Sandra Witzmann,&nbsp;Alexander Riss,&nbsp;Herwig Michor,&nbsp;Raimund Podloucky,&nbsp;Sergii Khmelevskyi,&nbsp;Antoine Georges,&nbsp;Karsten Held,&nbsp;Takao Mori,&nbsp;Ernst Bauer,&nbsp;Andrej Pustogow","doi":"10.1126/sciadv.adv7113","DOIUrl":null,"url":null,"abstract":"<div >Traditional thermoelectric materials rely on low thermal conductivity to enhance their efficiency but suffer from inherently limited power factors. Innovative pathways to optimize electronic transport are thus crucial. Here, we achieve ultrahigh power factors in Ni<sub>3</sub>Ge-based systems through an unconventional thermoelectric materials design principle. When overlapping flat and dispersive bands are engineered to the Fermi level, charge carriers can undergo intense interband scattering, yielding an energy filtering effect similar to what has long been predicted in certain nanostructured materials. Via a multistep DFT-based screening method developed here, we find a family of L1<sub>2</sub>-ordered binary compounds with ultrahigh power factors up to 11 mW m<sup>−1</sup> K<sup>−2</sup> near room temperature, which are driven by an intrinsic phonon-mediated energy filtering mechanism. Our comprehensive experimental and theoretical study of these intriguing materials paves the way for understanding and designing high-performance scattering-tuned metallic thermoelectrics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 31","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv7113","citationCount":"0","resultStr":"{\"title\":\"Energy filtering–induced ultrahigh thermoelectric power factors in Ni3Ge\",\"authors\":\"Fabian Garmroudi,&nbsp;Simone Di Cataldo,&nbsp;Michael Parzer,&nbsp;Jennifer Coulter,&nbsp;Yutaka Iwasaki,&nbsp;Matthias Grasser,&nbsp;Simon Stockinger,&nbsp;Stephan Pázmán,&nbsp;Sandra Witzmann,&nbsp;Alexander Riss,&nbsp;Herwig Michor,&nbsp;Raimund Podloucky,&nbsp;Sergii Khmelevskyi,&nbsp;Antoine Georges,&nbsp;Karsten Held,&nbsp;Takao Mori,&nbsp;Ernst Bauer,&nbsp;Andrej Pustogow\",\"doi\":\"10.1126/sciadv.adv7113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Traditional thermoelectric materials rely on low thermal conductivity to enhance their efficiency but suffer from inherently limited power factors. Innovative pathways to optimize electronic transport are thus crucial. Here, we achieve ultrahigh power factors in Ni<sub>3</sub>Ge-based systems through an unconventional thermoelectric materials design principle. When overlapping flat and dispersive bands are engineered to the Fermi level, charge carriers can undergo intense interband scattering, yielding an energy filtering effect similar to what has long been predicted in certain nanostructured materials. Via a multistep DFT-based screening method developed here, we find a family of L1<sub>2</sub>-ordered binary compounds with ultrahigh power factors up to 11 mW m<sup>−1</sup> K<sup>−2</sup> near room temperature, which are driven by an intrinsic phonon-mediated energy filtering mechanism. Our comprehensive experimental and theoretical study of these intriguing materials paves the way for understanding and designing high-performance scattering-tuned metallic thermoelectrics.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 31\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adv7113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adv7113\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv7113","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

传统的热电材料依靠低导热系数来提高效率,但受到固有的功率因数限制。因此,优化电子运输的创新途径至关重要。在这里,我们通过一种非常规的热电材料设计原理,在基于Ni 3 ge的系统中实现了超高功率因数。当重叠的平坦带和色散带被设计到费米能级时,载流子可以经历强烈的带间散射,产生类似于某些纳米结构材料长期预测的能量过滤效应。通过基于多步dft的筛选方法,我们发现了一个由声子介导的能量过滤机制驱动的L1 2有序二元化合物家族,其在室温下具有高达11 mW m−1 K−2的超高功率因子。我们对这些有趣材料的全面实验和理论研究为理解和设计高性能散射调谐金属热电器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy filtering–induced ultrahigh thermoelectric power factors in Ni3Ge

Energy filtering–induced ultrahigh thermoelectric power factors in Ni3Ge
Traditional thermoelectric materials rely on low thermal conductivity to enhance their efficiency but suffer from inherently limited power factors. Innovative pathways to optimize electronic transport are thus crucial. Here, we achieve ultrahigh power factors in Ni3Ge-based systems through an unconventional thermoelectric materials design principle. When overlapping flat and dispersive bands are engineered to the Fermi level, charge carriers can undergo intense interband scattering, yielding an energy filtering effect similar to what has long been predicted in certain nanostructured materials. Via a multistep DFT-based screening method developed here, we find a family of L12-ordered binary compounds with ultrahigh power factors up to 11 mW m−1 K−2 near room temperature, which are driven by an intrinsic phonon-mediated energy filtering mechanism. Our comprehensive experimental and theoretical study of these intriguing materials paves the way for understanding and designing high-performance scattering-tuned metallic thermoelectrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信