Yan Yan, Xiongyi Liang, Liqiang Wang, Yuxuan Zhang, Jiaming Zhou, Weijun Wang, Zhibo Zhang, Yu Zhou, Irum Firdous, Zhengxun Lai, Wei Wang, Pengshan Xie, Yuecheng Xiong, Walid A. Daoud, Zhiyong Fan, Dong-Myeong Shin, Yong Yang, Yang Lu, Xiao Cheng Zeng, You Meng, Johnny C. Ho
{"title":"自应变碲中铁电极化的柔性电操纵","authors":"Yan Yan, Xiongyi Liang, Liqiang Wang, Yuxuan Zhang, Jiaming Zhou, Weijun Wang, Zhibo Zhang, Yu Zhou, Irum Firdous, Zhengxun Lai, Wei Wang, Pengshan Xie, Yuecheng Xiong, Walid A. Daoud, Zhiyong Fan, Dong-Myeong Shin, Yong Yang, Yang Lu, Xiao Cheng Zeng, You Meng, Johnny C. Ho","doi":"10.1126/sciadv.adu1716","DOIUrl":null,"url":null,"abstract":"<div >Beyond conventional ferroelectric compounds, the realization of single-element ferroelectricity expands the scope of ferroelectric materials and diversifies polarization mechanisms. However, strategies for manipulating ferroelectric dipoles in elemental ferroelectrics remain underexplored, limiting their broader applications. Here, we introduce a universal flexoelectric manipulation strategy to tune the ferroelectric and piezoelectric polarization of one-dimensional self-strained tellurium (Te) ferroelectrics. A substantial flexoelectric field of 9.55 microcoulombs per square centimeter was observed in self-strained Te, inducing a polarization rotation of 18°, comparable to the typical 15° rotation in ferroelectric PbTiO<sub>3</sub> compounds. This substantial polarization rotation enhances ferroelectric coercivity by 165% and piezoelectric responses by 75% compared to unstrained Te. Moreover, the flexoelectric manipulation of ferroelectric polarization demonstrated improved energy harvesting performance at the device level, surpassing most existing counterparts. Our findings highlight the crucial role of flexoelectricity-ferroelectricity coupling in developing high-performance single-element electromechanical devices and ferroelectronics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 31","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu1716","citationCount":"0","resultStr":"{\"title\":\"Flexoelectric manipulation of ferroelectric polarization in self-strained tellurium\",\"authors\":\"Yan Yan, Xiongyi Liang, Liqiang Wang, Yuxuan Zhang, Jiaming Zhou, Weijun Wang, Zhibo Zhang, Yu Zhou, Irum Firdous, Zhengxun Lai, Wei Wang, Pengshan Xie, Yuecheng Xiong, Walid A. Daoud, Zhiyong Fan, Dong-Myeong Shin, Yong Yang, Yang Lu, Xiao Cheng Zeng, You Meng, Johnny C. Ho\",\"doi\":\"10.1126/sciadv.adu1716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Beyond conventional ferroelectric compounds, the realization of single-element ferroelectricity expands the scope of ferroelectric materials and diversifies polarization mechanisms. However, strategies for manipulating ferroelectric dipoles in elemental ferroelectrics remain underexplored, limiting their broader applications. Here, we introduce a universal flexoelectric manipulation strategy to tune the ferroelectric and piezoelectric polarization of one-dimensional self-strained tellurium (Te) ferroelectrics. A substantial flexoelectric field of 9.55 microcoulombs per square centimeter was observed in self-strained Te, inducing a polarization rotation of 18°, comparable to the typical 15° rotation in ferroelectric PbTiO<sub>3</sub> compounds. This substantial polarization rotation enhances ferroelectric coercivity by 165% and piezoelectric responses by 75% compared to unstrained Te. Moreover, the flexoelectric manipulation of ferroelectric polarization demonstrated improved energy harvesting performance at the device level, surpassing most existing counterparts. Our findings highlight the crucial role of flexoelectricity-ferroelectricity coupling in developing high-performance single-element electromechanical devices and ferroelectronics.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 31\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu1716\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu1716\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu1716","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Flexoelectric manipulation of ferroelectric polarization in self-strained tellurium
Beyond conventional ferroelectric compounds, the realization of single-element ferroelectricity expands the scope of ferroelectric materials and diversifies polarization mechanisms. However, strategies for manipulating ferroelectric dipoles in elemental ferroelectrics remain underexplored, limiting their broader applications. Here, we introduce a universal flexoelectric manipulation strategy to tune the ferroelectric and piezoelectric polarization of one-dimensional self-strained tellurium (Te) ferroelectrics. A substantial flexoelectric field of 9.55 microcoulombs per square centimeter was observed in self-strained Te, inducing a polarization rotation of 18°, comparable to the typical 15° rotation in ferroelectric PbTiO3 compounds. This substantial polarization rotation enhances ferroelectric coercivity by 165% and piezoelectric responses by 75% compared to unstrained Te. Moreover, the flexoelectric manipulation of ferroelectric polarization demonstrated improved energy harvesting performance at the device level, surpassing most existing counterparts. Our findings highlight the crucial role of flexoelectricity-ferroelectricity coupling in developing high-performance single-element electromechanical devices and ferroelectronics.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.