{"title":"静态三维结构决定了间期染色体远端位点对之间的快速动力学","authors":"Guang Shi, Sucheol Shin, D. Thirumalai","doi":"10.1126/sciadv.adx1763","DOIUrl":null,"url":null,"abstract":"<div >Live-cell imaging experiments have shown that the distal dynamics between enhancers and promoters are unexpectedly rapid and incompatible with standard polymer models. The discordance between the compact static chromatin organization and dynamics is a conundrum that violates the expected structure–function relationship. We developed a theory to predict chromatin dynamics by accurately determining three-dimensional (3D) structures from static Hi-C contact maps or fixed-cell imaging data. Using the calculated 3D coordinates, the theory accurately forecasts experimentally observed two-point chromatin dynamics. It predicts rapid enhancer–promoter interactions and uncovers a scaling relationship between two-point relaxation time and genomic separation, closely matching recent measurements. The theory predicts that cohesin depletion accelerates single-locus diffusion while significantly slowing relaxation dynamics within topologically associating domains. Our results demonstrate that chromatin dynamics can be reliably inferred from static structural data, reinforcing the notion that 3D chromatin structure governs dynamic behavior. This general framework offers powerful tools for exploring chromatin dynamics across diverse biological contexts.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 31","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx1763","citationCount":"0","resultStr":"{\"title\":\"Static three-dimensional structures determine fast dynamics between distal loci pairs in interphase chromosomes\",\"authors\":\"Guang Shi, Sucheol Shin, D. Thirumalai\",\"doi\":\"10.1126/sciadv.adx1763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Live-cell imaging experiments have shown that the distal dynamics between enhancers and promoters are unexpectedly rapid and incompatible with standard polymer models. The discordance between the compact static chromatin organization and dynamics is a conundrum that violates the expected structure–function relationship. We developed a theory to predict chromatin dynamics by accurately determining three-dimensional (3D) structures from static Hi-C contact maps or fixed-cell imaging data. Using the calculated 3D coordinates, the theory accurately forecasts experimentally observed two-point chromatin dynamics. It predicts rapid enhancer–promoter interactions and uncovers a scaling relationship between two-point relaxation time and genomic separation, closely matching recent measurements. The theory predicts that cohesin depletion accelerates single-locus diffusion while significantly slowing relaxation dynamics within topologically associating domains. Our results demonstrate that chromatin dynamics can be reliably inferred from static structural data, reinforcing the notion that 3D chromatin structure governs dynamic behavior. This general framework offers powerful tools for exploring chromatin dynamics across diverse biological contexts.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 31\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx1763\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx1763\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx1763","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Static three-dimensional structures determine fast dynamics between distal loci pairs in interphase chromosomes
Live-cell imaging experiments have shown that the distal dynamics between enhancers and promoters are unexpectedly rapid and incompatible with standard polymer models. The discordance between the compact static chromatin organization and dynamics is a conundrum that violates the expected structure–function relationship. We developed a theory to predict chromatin dynamics by accurately determining three-dimensional (3D) structures from static Hi-C contact maps or fixed-cell imaging data. Using the calculated 3D coordinates, the theory accurately forecasts experimentally observed two-point chromatin dynamics. It predicts rapid enhancer–promoter interactions and uncovers a scaling relationship between two-point relaxation time and genomic separation, closely matching recent measurements. The theory predicts that cohesin depletion accelerates single-locus diffusion while significantly slowing relaxation dynamics within topologically associating domains. Our results demonstrate that chromatin dynamics can be reliably inferred from static structural data, reinforcing the notion that 3D chromatin structure governs dynamic behavior. This general framework offers powerful tools for exploring chromatin dynamics across diverse biological contexts.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.