Julia Gauberg, Sarah Jenkins, Kevin B. Moreno, Karthik Jayaraman, Sara Abumeri, Alisa Salazar, Hiruy S. Meharena, Stacey M. Glasgow
{"title":"脊髓运动神经元的发育和代谢受核因子IA的转录调控","authors":"Julia Gauberg, Sarah Jenkins, Kevin B. Moreno, Karthik Jayaraman, Sara Abumeri, Alisa Salazar, Hiruy S. Meharena, Stacey M. Glasgow","doi":"10.1126/sciadv.adu3346","DOIUrl":null,"url":null,"abstract":"<div >Neural circuits governing all motor behaviors in vertebrates rely on the proper development of motor neurons and their precise targeting of limb muscles. Transcription factors are essential for motor neuron development, regulating their specification, migration, and axonal targeting. While transcriptional regulation of the early stages of motor neuron specification is well established, much less is known about the role of transcription factors in the later stages of maturation and muscle targeting. Defining the molecular mechanisms of these later stages is critical for elucidating how motor circuits are constructed. Here, we demonstrate that the transcription factor nuclear factor IA (NFIA) is required for motor neuron positioning, axonal branching, and neuromuscular junction formation. Moreover, we find that NFIA is required for proper mitochondrial function and adenosine triphosphate production, providing an important link between transcription factors and metabolism during motor neuron development. Together, these findings underscore the critical role of NFIA in instructing the assembly of spinal circuits for movement.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 31","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu3346","citationCount":"0","resultStr":"{\"title\":\"Spinal motor neuron development and metabolism are transcriptionally regulated by nuclear factor IA\",\"authors\":\"Julia Gauberg, Sarah Jenkins, Kevin B. Moreno, Karthik Jayaraman, Sara Abumeri, Alisa Salazar, Hiruy S. Meharena, Stacey M. Glasgow\",\"doi\":\"10.1126/sciadv.adu3346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Neural circuits governing all motor behaviors in vertebrates rely on the proper development of motor neurons and their precise targeting of limb muscles. Transcription factors are essential for motor neuron development, regulating their specification, migration, and axonal targeting. While transcriptional regulation of the early stages of motor neuron specification is well established, much less is known about the role of transcription factors in the later stages of maturation and muscle targeting. Defining the molecular mechanisms of these later stages is critical for elucidating how motor circuits are constructed. Here, we demonstrate that the transcription factor nuclear factor IA (NFIA) is required for motor neuron positioning, axonal branching, and neuromuscular junction formation. Moreover, we find that NFIA is required for proper mitochondrial function and adenosine triphosphate production, providing an important link between transcription factors and metabolism during motor neuron development. Together, these findings underscore the critical role of NFIA in instructing the assembly of spinal circuits for movement.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 31\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu3346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu3346\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu3346","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Spinal motor neuron development and metabolism are transcriptionally regulated by nuclear factor IA
Neural circuits governing all motor behaviors in vertebrates rely on the proper development of motor neurons and their precise targeting of limb muscles. Transcription factors are essential for motor neuron development, regulating their specification, migration, and axonal targeting. While transcriptional regulation of the early stages of motor neuron specification is well established, much less is known about the role of transcription factors in the later stages of maturation and muscle targeting. Defining the molecular mechanisms of these later stages is critical for elucidating how motor circuits are constructed. Here, we demonstrate that the transcription factor nuclear factor IA (NFIA) is required for motor neuron positioning, axonal branching, and neuromuscular junction formation. Moreover, we find that NFIA is required for proper mitochondrial function and adenosine triphosphate production, providing an important link between transcription factors and metabolism during motor neuron development. Together, these findings underscore the critical role of NFIA in instructing the assembly of spinal circuits for movement.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.