{"title":"钙钛矿太阳能电池化学惰性低维界面的选择性模板生长","authors":"Haixia Rao, Senyun Ye, Teddy Salim, Rishikanta Mayengbam, Yuanyuan Guo, Minjun Feng, Lifei Xi, Zhihao Yen, Rajendra Salim, Yue Wang, Rui Cai, Xingchi Xiao, Bo Wang, Huajun He, Tze Chien Sum, Yeng Ming Lam","doi":"10.1038/s41560-025-01815-8","DOIUrl":null,"url":null,"abstract":"Chemically inert low-dimensional (CI LD) halogenometallate interfaces incorporating low-reactivity bulky cations could address the trade-off between efficiency and stability in perovskite solar cells (PSCs). However, their formation is hindered by the low reactivity of their bulky cations and solubility constraints of their precursors in orthogonal solvents compatible with underlying perovskites. Here we introduce a selective templating growth strategy that leverages conventional metastable LD interfaces as templates to drive the growth of more stable CI LD interfaces through an organic cation exchange process. Our prototype PSCs achieve efficiencies of 25.1% over an active area of 1.235 cm2—among the highest reported for 1-cm2 PSCs. The PSCs retain over 93% and 98% of their initial efficiency after 1,000 h of operation and 1,100 h of thermal ageing at 85 °C, respectively. The versatility of this strategy unlocks access to CI LD interfaces, paving the way for the development of more efficient and stable PSCs. Low-dimensional perovskites afford high efficiencies in solar cells but at the expense of stability. Rao et al. develop a template growth approach to form low-dimensional perovskites from low-reactivity and hence more stable organic cations.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 8","pages":"991-1000"},"PeriodicalIF":60.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective templating growth of chemically inert low-dimensional interfaces for perovskite solar cells\",\"authors\":\"Haixia Rao, Senyun Ye, Teddy Salim, Rishikanta Mayengbam, Yuanyuan Guo, Minjun Feng, Lifei Xi, Zhihao Yen, Rajendra Salim, Yue Wang, Rui Cai, Xingchi Xiao, Bo Wang, Huajun He, Tze Chien Sum, Yeng Ming Lam\",\"doi\":\"10.1038/s41560-025-01815-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemically inert low-dimensional (CI LD) halogenometallate interfaces incorporating low-reactivity bulky cations could address the trade-off between efficiency and stability in perovskite solar cells (PSCs). However, their formation is hindered by the low reactivity of their bulky cations and solubility constraints of their precursors in orthogonal solvents compatible with underlying perovskites. Here we introduce a selective templating growth strategy that leverages conventional metastable LD interfaces as templates to drive the growth of more stable CI LD interfaces through an organic cation exchange process. Our prototype PSCs achieve efficiencies of 25.1% over an active area of 1.235 cm2—among the highest reported for 1-cm2 PSCs. The PSCs retain over 93% and 98% of their initial efficiency after 1,000 h of operation and 1,100 h of thermal ageing at 85 °C, respectively. The versatility of this strategy unlocks access to CI LD interfaces, paving the way for the development of more efficient and stable PSCs. Low-dimensional perovskites afford high efficiencies in solar cells but at the expense of stability. Rao et al. develop a template growth approach to form low-dimensional perovskites from low-reactivity and hence more stable organic cations.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"10 8\",\"pages\":\"991-1000\"},\"PeriodicalIF\":60.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-025-01815-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-025-01815-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Selective templating growth of chemically inert low-dimensional interfaces for perovskite solar cells
Chemically inert low-dimensional (CI LD) halogenometallate interfaces incorporating low-reactivity bulky cations could address the trade-off between efficiency and stability in perovskite solar cells (PSCs). However, their formation is hindered by the low reactivity of their bulky cations and solubility constraints of their precursors in orthogonal solvents compatible with underlying perovskites. Here we introduce a selective templating growth strategy that leverages conventional metastable LD interfaces as templates to drive the growth of more stable CI LD interfaces through an organic cation exchange process. Our prototype PSCs achieve efficiencies of 25.1% over an active area of 1.235 cm2—among the highest reported for 1-cm2 PSCs. The PSCs retain over 93% and 98% of their initial efficiency after 1,000 h of operation and 1,100 h of thermal ageing at 85 °C, respectively. The versatility of this strategy unlocks access to CI LD interfaces, paving the way for the development of more efficient and stable PSCs. Low-dimensional perovskites afford high efficiencies in solar cells but at the expense of stability. Rao et al. develop a template growth approach to form low-dimensional perovskites from low-reactivity and hence more stable organic cations.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.