柔性单离子导电嵌段共聚物电解质的界面相位调节确保锂金属电池的超稳定

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yating Yu, Sida Chen, Hai-Peng Liang, Ziqi Zhao, Guangze Chu, Ziting Zhi, Xian-Ao Li, Cheng Li, Ruixin Li, Xin Liu, Minghua Chen, Youzhi Xu, Stefano Passerini and Zhen Chen
{"title":"柔性单离子导电嵌段共聚物电解质的界面相位调节确保锂金属电池的超稳定","authors":"Yating Yu, Sida Chen, Hai-Peng Liang, Ziqi Zhao, Guangze Chu, Ziting Zhi, Xian-Ao Li, Cheng Li, Ruixin Li, Xin Liu, Minghua Chen, Youzhi Xu, Stefano Passerini and Zhen Chen","doi":"10.1039/D5EE02503F","DOIUrl":null,"url":null,"abstract":"<p >Single-ion conducting copolymer electrolytes (SIPEs) have significant potential for next-generation lithium metal batteries (LMBs). However, the unsatisfactory ionic conductivity, limited mechanical strength, and lack of insights into the lithium-ion transport mechanism hinder their wide applications in LMBs. In this regard, we develop a novel SIPE through tethering lithium 3-hydroxypropanesulfonyl-trifluoromethanesulfonylimide onto a poly(vinylidene fluoride-<em>co</em>-trifluorochloroethylene)-based copolymer (PCL-SIPE). Molecular dynamics simulations reveal a unique transport pathway where fluorine atoms in the copolymer backbone interact with lithium-ions, serving as staging points for ion transport between adjacent sidechains. Compared with dual-ion conducting counterparts, PCL-SIPE exhibits significantly higher Young's modulus (28 <em>vs.</em> 17 GPa), tensile strength (20.65 <em>vs.</em> 5.65 MPa), and <em>t</em><small><sub>Li<small><sup>+</sup></small></sub></small> (0.94 <em>vs.</em> 0.39), achieving substantially prolonged lithium stripping-plating lifetime, <em>ca.</em>, &gt;3200 <em>vs.</em> 323 h. This is predominantly ascribed to the as-formed favorable solid electrolyte interphase with ideal constitutions—ultra-high LiF content in combination with Li<small><sub>2</sub></small>O, dynamically regulating uniform Li<small><sup>+</sup></small> flux and stabilizing the electrode|electrolyte interface. Thereby, PCL-SIPE demonstrates superior compatibility with both LiFePO<small><sub>4</sub></small> (LFP) and LiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> cathodes in full-cells, and achieves impressive performance even under high-loading conditions (15 mg cm<small><sup>−2</sup></small>), low-temperature (−30 °C), in trilayer bipolar stacking pouch full-cells, achieving an energy density of 245.88 Wh kg<small><sup>−1</sup></small>. These render PCL-SIPE a strong candidate for next-generation high-performance LMBs.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 18","pages":" 8575-8587"},"PeriodicalIF":30.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ee/d5ee02503f?page=search","citationCount":"0","resultStr":"{\"title\":\"Interfacial phase regulation of flexible single-ion conducting block copolymer electrolytes ensuring ultra-stable lithium metal batteries\",\"authors\":\"Yating Yu, Sida Chen, Hai-Peng Liang, Ziqi Zhao, Guangze Chu, Ziting Zhi, Xian-Ao Li, Cheng Li, Ruixin Li, Xin Liu, Minghua Chen, Youzhi Xu, Stefano Passerini and Zhen Chen\",\"doi\":\"10.1039/D5EE02503F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Single-ion conducting copolymer electrolytes (SIPEs) have significant potential for next-generation lithium metal batteries (LMBs). However, the unsatisfactory ionic conductivity, limited mechanical strength, and lack of insights into the lithium-ion transport mechanism hinder their wide applications in LMBs. In this regard, we develop a novel SIPE through tethering lithium 3-hydroxypropanesulfonyl-trifluoromethanesulfonylimide onto a poly(vinylidene fluoride-<em>co</em>-trifluorochloroethylene)-based copolymer (PCL-SIPE). Molecular dynamics simulations reveal a unique transport pathway where fluorine atoms in the copolymer backbone interact with lithium-ions, serving as staging points for ion transport between adjacent sidechains. Compared with dual-ion conducting counterparts, PCL-SIPE exhibits significantly higher Young's modulus (28 <em>vs.</em> 17 GPa), tensile strength (20.65 <em>vs.</em> 5.65 MPa), and <em>t</em><small><sub>Li<small><sup>+</sup></small></sub></small> (0.94 <em>vs.</em> 0.39), achieving substantially prolonged lithium stripping-plating lifetime, <em>ca.</em>, &gt;3200 <em>vs.</em> 323 h. This is predominantly ascribed to the as-formed favorable solid electrolyte interphase with ideal constitutions—ultra-high LiF content in combination with Li<small><sub>2</sub></small>O, dynamically regulating uniform Li<small><sup>+</sup></small> flux and stabilizing the electrode|electrolyte interface. Thereby, PCL-SIPE demonstrates superior compatibility with both LiFePO<small><sub>4</sub></small> (LFP) and LiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> cathodes in full-cells, and achieves impressive performance even under high-loading conditions (15 mg cm<small><sup>−2</sup></small>), low-temperature (−30 °C), in trilayer bipolar stacking pouch full-cells, achieving an energy density of 245.88 Wh kg<small><sup>−1</sup></small>. These render PCL-SIPE a strong candidate for next-generation high-performance LMBs.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 18\",\"pages\":\" 8575-8587\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ee/d5ee02503f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee02503f\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee02503f","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单离子导电共聚物电解质(SIPEs)在下一代锂金属电池(lmb)中具有巨大的潜力。然而,不理想的离子电导率、有限的机械强度以及对锂离子输运机制的缺乏了解阻碍了它们在lmb中的广泛应用。在这方面,我们通过将3-羟基丙烷磺酰-三氟甲烷磺酰亚胺锂系在聚偏氟乙烯-共三氟氯乙烯基共聚物(PCL-SIPE)上开发了一种新型SIPE。分子动力学模拟揭示了共聚物主链中的氟原子与锂离子相互作用的独特传输途径,作为相邻侧链之间离子传输的过渡点。与双离子导电的PCL-SIPE相比,PCL-SIPE的杨氏模量(28比17 GPa)、抗拉强度(20.65比5.65 MPa)和tLi +(0.94比0.39)明显更高,大大延长了锂剥离镀寿命,ca., >;这主要是由于形成了良好的固体电解质界面,具有理想的成分- Li2O的超高LiF含量,动态调节均匀的Li通量和稳定电极|电解质界面。因此,PCL-SIPE在全电池中表现出与LiFePO4 (LFP)和LiNi0.8Co0.1Mn0.1O2阴极的优越兼容性,并且即使在高负载条件(15 mg cm−2),低温(-30°C)下,在三层双极堆叠袋状电池中也能取得令人印象深刻的性能,实现245.88 Wh kg−1的能量密度。这使得PCL-SIPE成为下一代高性能lmb的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial phase regulation of flexible single-ion conducting block copolymer electrolytes ensuring ultra-stable lithium metal batteries

Interfacial phase regulation of flexible single-ion conducting block copolymer electrolytes ensuring ultra-stable lithium metal batteries

Single-ion conducting copolymer electrolytes (SIPEs) have significant potential for next-generation lithium metal batteries (LMBs). However, the unsatisfactory ionic conductivity, limited mechanical strength, and lack of insights into the lithium-ion transport mechanism hinder their wide applications in LMBs. In this regard, we develop a novel SIPE through tethering lithium 3-hydroxypropanesulfonyl-trifluoromethanesulfonylimide onto a poly(vinylidene fluoride-co-trifluorochloroethylene)-based copolymer (PCL-SIPE). Molecular dynamics simulations reveal a unique transport pathway where fluorine atoms in the copolymer backbone interact with lithium-ions, serving as staging points for ion transport between adjacent sidechains. Compared with dual-ion conducting counterparts, PCL-SIPE exhibits significantly higher Young's modulus (28 vs. 17 GPa), tensile strength (20.65 vs. 5.65 MPa), and tLi+ (0.94 vs. 0.39), achieving substantially prolonged lithium stripping-plating lifetime, ca., >3200 vs. 323 h. This is predominantly ascribed to the as-formed favorable solid electrolyte interphase with ideal constitutions—ultra-high LiF content in combination with Li2O, dynamically regulating uniform Li+ flux and stabilizing the electrode|electrolyte interface. Thereby, PCL-SIPE demonstrates superior compatibility with both LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 cathodes in full-cells, and achieves impressive performance even under high-loading conditions (15 mg cm−2), low-temperature (−30 °C), in trilayer bipolar stacking pouch full-cells, achieving an energy density of 245.88 Wh kg−1. These render PCL-SIPE a strong candidate for next-generation high-performance LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信