可解释的多模态深度学习用于超声成像预测甲状腺癌外侧淋巴结转移

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Pengcheng Shen, Zheyu Yang, Jingjing Sun, Yun Wang, Cheng Qiu, Yirou Wang, Yongyong Ren, Sheng Liu, Wei Cai, Hui Lu, Siqiong Yao
{"title":"可解释的多模态深度学习用于超声成像预测甲状腺癌外侧淋巴结转移","authors":"Pengcheng Shen, Zheyu Yang, Jingjing Sun, Yun Wang, Cheng Qiu, Yirou Wang, Yongyong Ren, Sheng Liu, Wei Cai, Hui Lu, Siqiong Yao","doi":"10.1038/s41467-025-62042-z","DOIUrl":null,"url":null,"abstract":"<p>Preoperative prediction of lateral lymph node metastasis is clinically crucial for guiding surgical strategy and prognosis assessment, yet precise prediction methods are lacking. We therefore develop Lateral Lymph Node Metastasis Network (LLNM-Net), a bidirectional-attention deep-learning model that fuses multimodal data (preoperative ultrasound images, radiology reports, pathological findings, and demographics) from 29,615 patients and 9836 surgical cases across seven centers. Integrating nodule morphology and position with clinical text, LLNM-Net achieves an Area Under the Curve (AUC) of 0.944 and 84.7% accuracy in multicenter testing, outperforming human experts (64.3% accuracy) and surpassing previous models by 7.4%. Here we show tumors within 0.25 cm of the thyroid capsule carry &gt;72% metastasis risk, with middle and upper lobes as high-risk regions. Leveraging location, shape, echogenicity, margins, demographics, and clinician inputs, LLNM-Net further attains an AUC of 0.983 for identifying high-risk patients. The model is thus a promising for tool for preoperative screening and risk stratification.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable multimodal deep learning for predicting thyroid cancer lateral lymph node metastasis using ultrasound imaging\",\"authors\":\"Pengcheng Shen, Zheyu Yang, Jingjing Sun, Yun Wang, Cheng Qiu, Yirou Wang, Yongyong Ren, Sheng Liu, Wei Cai, Hui Lu, Siqiong Yao\",\"doi\":\"10.1038/s41467-025-62042-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Preoperative prediction of lateral lymph node metastasis is clinically crucial for guiding surgical strategy and prognosis assessment, yet precise prediction methods are lacking. We therefore develop Lateral Lymph Node Metastasis Network (LLNM-Net), a bidirectional-attention deep-learning model that fuses multimodal data (preoperative ultrasound images, radiology reports, pathological findings, and demographics) from 29,615 patients and 9836 surgical cases across seven centers. Integrating nodule morphology and position with clinical text, LLNM-Net achieves an Area Under the Curve (AUC) of 0.944 and 84.7% accuracy in multicenter testing, outperforming human experts (64.3% accuracy) and surpassing previous models by 7.4%. Here we show tumors within 0.25 cm of the thyroid capsule carry &gt;72% metastasis risk, with middle and upper lobes as high-risk regions. Leveraging location, shape, echogenicity, margins, demographics, and clinician inputs, LLNM-Net further attains an AUC of 0.983 for identifying high-risk patients. The model is thus a promising for tool for preoperative screening and risk stratification.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62042-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62042-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

术前预测外侧淋巴结转移对指导手术策略和预后评估具有重要意义,但目前缺乏精确的预测方法。因此,我们开发了侧淋巴结转移网络(LLNM-Net),这是一个双向注意力深度学习模型,融合了来自7个中心29,615名患者和9836例手术病例的多模态数据(术前超声图像、放射学报告、病理结果和人口统计学)。将结节形态和位置与临床文本相结合,LLNM-Net在多中心测试中实现了0.944的曲线下面积(Area Under the Curve, AUC)和84.7%的准确率,优于人类专家(准确率64.3%),比以前的模型高出7.4%。我们发现甲状腺囊0.25 cm以内的肿瘤有72%的转移风险,其中中叶和上叶是高危区域。利用位置、形状、回声性、边缘、人口统计学和临床医生的输入,LLNM-Net进一步实现了识别高风险患者的AUC为0.983。因此,该模型是一种有希望的术前筛查和风险分层工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Explainable multimodal deep learning for predicting thyroid cancer lateral lymph node metastasis using ultrasound imaging

Explainable multimodal deep learning for predicting thyroid cancer lateral lymph node metastasis using ultrasound imaging

Preoperative prediction of lateral lymph node metastasis is clinically crucial for guiding surgical strategy and prognosis assessment, yet precise prediction methods are lacking. We therefore develop Lateral Lymph Node Metastasis Network (LLNM-Net), a bidirectional-attention deep-learning model that fuses multimodal data (preoperative ultrasound images, radiology reports, pathological findings, and demographics) from 29,615 patients and 9836 surgical cases across seven centers. Integrating nodule morphology and position with clinical text, LLNM-Net achieves an Area Under the Curve (AUC) of 0.944 and 84.7% accuracy in multicenter testing, outperforming human experts (64.3% accuracy) and surpassing previous models by 7.4%. Here we show tumors within 0.25 cm of the thyroid capsule carry >72% metastasis risk, with middle and upper lobes as high-risk regions. Leveraging location, shape, echogenicity, margins, demographics, and clinician inputs, LLNM-Net further attains an AUC of 0.983 for identifying high-risk patients. The model is thus a promising for tool for preoperative screening and risk stratification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信