具有连续导电通道的蜂窝状多孔碳框架用于稳定的SiOx/C阳极。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yueyao Dong, Min Niu, Jia-Yan Liang, Liwei Dong*, Jingying Xie* and Chunhui Yang*, 
{"title":"具有连续导电通道的蜂窝状多孔碳框架用于稳定的SiOx/C阳极。","authors":"Yueyao Dong,&nbsp;Min Niu,&nbsp;Jia-Yan Liang,&nbsp;Liwei Dong*,&nbsp;Jingying Xie* and Chunhui Yang*,&nbsp;","doi":"10.1021/acsami.5c07009","DOIUrl":null,"url":null,"abstract":"<p >Silicon oxide (SiO<sub><i>x</i></sub>) materials have been extensively researched. However, slow intrinsic kinetics and significant volume changes hinder the practical deployment of SiO<sub><i>x</i></sub> anodes. Herein, an <i>in situ</i> molecular polymerization strategy, in which a loading substrate (PM) is introduced into a mixed solution of silane, is devised to construct SiO<sub><i>x</i></sub>/C composites with honeycomb porous frameworks through one-step condensation followed by carbonization at 900 °C without any template or additive. The uniform dispersion of SiO<sub><i>x</i></sub>/C facilitates rapid Li<sup>+</sup> transport and stress dissipation, while abundant pore volume accommodates SiO<sub><i>x</i></sub>/C expansion during lithiation/delithiation, thereby alleviating mechanical stress and enhancing electrode–electrolyte wettability. The continuous honeycomb-like channel changes capacitive behavior of the anode, improving lithium-ion diffusion kinetics and electrochemical performances at high current densities. The PM@SiO<sub><i>x</i></sub>/C anode delivers 95.8% capacity retention after 500 cycles at 2 A g<sup>–1</sup>, which is attributed to the dual protection from both well-dispersed carbon and honeycomb porous frameworks. This molecular polymerization strategy facilitates the scalable production of Si-based porous materials, simultaneously establishing a distinctive way to prepare template-free porous frameworks.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 32","pages":"45660–45667"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Honeycomb-Like Porous Carbon Framework with Consecutive Conductive Channels for Stable SiOx/C Anodes\",\"authors\":\"Yueyao Dong,&nbsp;Min Niu,&nbsp;Jia-Yan Liang,&nbsp;Liwei Dong*,&nbsp;Jingying Xie* and Chunhui Yang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c07009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silicon oxide (SiO<sub><i>x</i></sub>) materials have been extensively researched. However, slow intrinsic kinetics and significant volume changes hinder the practical deployment of SiO<sub><i>x</i></sub> anodes. Herein, an <i>in situ</i> molecular polymerization strategy, in which a loading substrate (PM) is introduced into a mixed solution of silane, is devised to construct SiO<sub><i>x</i></sub>/C composites with honeycomb porous frameworks through one-step condensation followed by carbonization at 900 °C without any template or additive. The uniform dispersion of SiO<sub><i>x</i></sub>/C facilitates rapid Li<sup>+</sup> transport and stress dissipation, while abundant pore volume accommodates SiO<sub><i>x</i></sub>/C expansion during lithiation/delithiation, thereby alleviating mechanical stress and enhancing electrode–electrolyte wettability. The continuous honeycomb-like channel changes capacitive behavior of the anode, improving lithium-ion diffusion kinetics and electrochemical performances at high current densities. The PM@SiO<sub><i>x</i></sub>/C anode delivers 95.8% capacity retention after 500 cycles at 2 A g<sup>–1</sup>, which is attributed to the dual protection from both well-dispersed carbon and honeycomb porous frameworks. This molecular polymerization strategy facilitates the scalable production of Si-based porous materials, simultaneously establishing a distinctive way to prepare template-free porous frameworks.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 32\",\"pages\":\"45660–45667\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c07009\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c07009","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化硅(SiOx)材料得到了广泛的研究。然而,缓慢的内在动力学和显著的体积变化阻碍了SiOx阳极的实际部署。本文提出了一种原位分子聚合策略,即在硅烷混合溶液中加入负载基板(PM),通过一步缩聚,然后在900°C下无模板或添加剂碳化,构建蜂窝多孔框架SiOx/C复合材料。SiOx/C的均匀分散有利于Li+的快速运输和应力耗散,而丰富的孔隙体积有利于SiOx/C在锂化/衰减过程中的膨胀,从而减轻机械应力,提高电极-电解质的润湿性。连续的蜂窝状通道改变了阳极的电容行为,改善了锂离子在高电流密度下的扩散动力学和电化学性能。在2 A g-1下循环500次后,PM@SiOx/C阳极的容量保持率为95.8%,这归功于分散良好的碳和蜂窝多孔框架的双重保护。这种分子聚合策略促进了硅基多孔材料的规模化生产,同时建立了一种独特的方法来制备无模板多孔框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Honeycomb-Like Porous Carbon Framework with Consecutive Conductive Channels for Stable SiOx/C Anodes

Honeycomb-Like Porous Carbon Framework with Consecutive Conductive Channels for Stable SiOx/C Anodes

Silicon oxide (SiOx) materials have been extensively researched. However, slow intrinsic kinetics and significant volume changes hinder the practical deployment of SiOx anodes. Herein, an in situ molecular polymerization strategy, in which a loading substrate (PM) is introduced into a mixed solution of silane, is devised to construct SiOx/C composites with honeycomb porous frameworks through one-step condensation followed by carbonization at 900 °C without any template or additive. The uniform dispersion of SiOx/C facilitates rapid Li+ transport and stress dissipation, while abundant pore volume accommodates SiOx/C expansion during lithiation/delithiation, thereby alleviating mechanical stress and enhancing electrode–electrolyte wettability. The continuous honeycomb-like channel changes capacitive behavior of the anode, improving lithium-ion diffusion kinetics and electrochemical performances at high current densities. The PM@SiOx/C anode delivers 95.8% capacity retention after 500 cycles at 2 A g–1, which is attributed to the dual protection from both well-dispersed carbon and honeycomb porous frameworks. This molecular polymerization strategy facilitates the scalable production of Si-based porous materials, simultaneously establishing a distinctive way to prepare template-free porous frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信