铁催化激光诱导石墨化,使空间可调谐铁/氧化铁相的无集流电极成为可能

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christopher H. Dreimol, Jesper Edberg, Ronny Kürsteiner, Maximilian Ritter, Sophie Koch, Annapaola Parrilli, Robert O. Kindler, Robert Brooke, Susanna Tinello, Sandro Stucki, Simon Bryner, Gerd Simons, Guido Panzarasa, Ingo Burgert
{"title":"铁催化激光诱导石墨化,使空间可调谐铁/氧化铁相的无集流电极成为可能","authors":"Christopher H. Dreimol,&nbsp;Jesper Edberg,&nbsp;Ronny Kürsteiner,&nbsp;Maximilian Ritter,&nbsp;Sophie Koch,&nbsp;Annapaola Parrilli,&nbsp;Robert O. Kindler,&nbsp;Robert Brooke,&nbsp;Susanna Tinello,&nbsp;Sandro Stucki,&nbsp;Simon Bryner,&nbsp;Gerd Simons,&nbsp;Guido Panzarasa,&nbsp;Ingo Burgert","doi":"10.1002/adma.202508812","DOIUrl":null,"url":null,"abstract":"<p>Iron-catalyzed laser-induced graphitization (IC-LIG) represents an eco-efficient alternative to traditional carbon electrode manufacturing. Combining a bio-based tannic acid–iron precursor ink with CO<sub>2</sub> laser treatment results in sheet resistance of 23.59 ± 1.2Ω □<sup>−1</sup> on renewable substrates. Varying the tannic-acid-to-iron ratio (TA:Fe), the rheology of the precursor ink can be tuned, enabling versatile application techniques, including spray coating, screen printing, and direct-ink-writing (DIW). Subsequent laser-treatment enables the formation of functional IC-LIG electrodes for all application methods, while even thick DIW-printed layers (260 µm) result in complex, conductive electrode patterns. Laser post-treatment expands design possibilities by locally tuning iron phases, such as converting γ-iron to magnetite. The unidirectional laser-treatment results in a layered arrangement, forming a multilayer electrode with a highly graphitized top layer serving as a current collector substitute, and an underlying composite of iron-rich nanoparticles embedded in a porous graphitic foam, acting as a hybrid electrode. Electrochemical analysis reveals double-layer capacitor behavior at low TA:Fe ratios, while higher ratios demonstrate increased redox activity and pseudo-capacitive characteristics. Achieving stable capacities of 15 mF cm<sup>−2</sup> with a 1 M NaCl electrolyte over 5000 cycles underscores the potential of IC-LIG electrodes as a sustainable solution for advanced energy storage devices and beyond.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 41","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202508812","citationCount":"0","resultStr":"{\"title\":\"Iron-Catalyzed Laser-Induced Graphitization Enabling Current Collector-Free Electrodes With Spatially Tunable Iron/Iron Oxide Phases\",\"authors\":\"Christopher H. Dreimol,&nbsp;Jesper Edberg,&nbsp;Ronny Kürsteiner,&nbsp;Maximilian Ritter,&nbsp;Sophie Koch,&nbsp;Annapaola Parrilli,&nbsp;Robert O. Kindler,&nbsp;Robert Brooke,&nbsp;Susanna Tinello,&nbsp;Sandro Stucki,&nbsp;Simon Bryner,&nbsp;Gerd Simons,&nbsp;Guido Panzarasa,&nbsp;Ingo Burgert\",\"doi\":\"10.1002/adma.202508812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron-catalyzed laser-induced graphitization (IC-LIG) represents an eco-efficient alternative to traditional carbon electrode manufacturing. Combining a bio-based tannic acid–iron precursor ink with CO<sub>2</sub> laser treatment results in sheet resistance of 23.59 ± 1.2Ω □<sup>−1</sup> on renewable substrates. Varying the tannic-acid-to-iron ratio (TA:Fe), the rheology of the precursor ink can be tuned, enabling versatile application techniques, including spray coating, screen printing, and direct-ink-writing (DIW). Subsequent laser-treatment enables the formation of functional IC-LIG electrodes for all application methods, while even thick DIW-printed layers (260 µm) result in complex, conductive electrode patterns. Laser post-treatment expands design possibilities by locally tuning iron phases, such as converting γ-iron to magnetite. The unidirectional laser-treatment results in a layered arrangement, forming a multilayer electrode with a highly graphitized top layer serving as a current collector substitute, and an underlying composite of iron-rich nanoparticles embedded in a porous graphitic foam, acting as a hybrid electrode. Electrochemical analysis reveals double-layer capacitor behavior at low TA:Fe ratios, while higher ratios demonstrate increased redox activity and pseudo-capacitive characteristics. Achieving stable capacities of 15 mF cm<sup>−2</sup> with a 1 M NaCl electrolyte over 5000 cycles underscores the potential of IC-LIG electrodes as a sustainable solution for advanced energy storage devices and beyond.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 41\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202508812\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202508812\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202508812","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁催化激光诱导石墨化(IC - LIG)代表了传统碳电极制造的生态高效替代方案。将生物基单宁酸-铁前驱体油墨与CO2激光处理相结合,可在可再生基材上获得23.59±1.2Ω□−1的片材电阻。通过改变单宁酸与铁的比例(TA:Fe),可以调整前驱体油墨的流变性,从而实现多种应用技术,包括喷涂、丝网印刷和直接墨水书写(DIW)。随后的激光处理可以为所有应用方法形成功能IC - LIG电极,而即使是厚的DIW印刷层(260 μ m)也会产生复杂的导电电极图案。激光后处理通过局部调整铁相,如将γ -铁转化为磁铁矿,扩大了设计的可能性。单向激光处理的结果是层状排列,形成一个多层电极,其中高度石墨化的顶层作为电流收集器的替代品,以及嵌入多孔石墨泡沫中的富铁纳米颗粒的复合材料,作为混合电极。电化学分析揭示了低TA:Fe比下双层电容器的行为,而高TA:Fe比下双层电容器表现出更高的氧化还原活性和伪电容特性。在1 M NaCl电解液中实现超过5000次循环的15 mF cm−2的稳定容量,强调了IC‐LIG电极作为先进储能设备及其他领域可持续解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iron-Catalyzed Laser-Induced Graphitization Enabling Current Collector-Free Electrodes With Spatially Tunable Iron/Iron Oxide Phases

Iron-Catalyzed Laser-Induced Graphitization Enabling Current Collector-Free Electrodes With Spatially Tunable Iron/Iron Oxide Phases

Iron-catalyzed laser-induced graphitization (IC-LIG) represents an eco-efficient alternative to traditional carbon electrode manufacturing. Combining a bio-based tannic acid–iron precursor ink with CO2 laser treatment results in sheet resistance of 23.59 ± 1.2Ω □−1 on renewable substrates. Varying the tannic-acid-to-iron ratio (TA:Fe), the rheology of the precursor ink can be tuned, enabling versatile application techniques, including spray coating, screen printing, and direct-ink-writing (DIW). Subsequent laser-treatment enables the formation of functional IC-LIG electrodes for all application methods, while even thick DIW-printed layers (260 µm) result in complex, conductive electrode patterns. Laser post-treatment expands design possibilities by locally tuning iron phases, such as converting γ-iron to magnetite. The unidirectional laser-treatment results in a layered arrangement, forming a multilayer electrode with a highly graphitized top layer serving as a current collector substitute, and an underlying composite of iron-rich nanoparticles embedded in a porous graphitic foam, acting as a hybrid electrode. Electrochemical analysis reveals double-layer capacitor behavior at low TA:Fe ratios, while higher ratios demonstrate increased redox activity and pseudo-capacitive characteristics. Achieving stable capacities of 15 mF cm−2 with a 1 M NaCl electrolyte over 5000 cycles underscores the potential of IC-LIG electrodes as a sustainable solution for advanced energy storage devices and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信