整合多模态测量确定结核病药物作用的关键机制。

IF 7.7
Cell systems Pub Date : 2025-08-20 Epub Date: 2025-07-29 DOI:10.1016/j.cels.2025.101348
William C Johnson, Ares Alivisatos, Trever C Smith, Nhi Van, Vijay Soni, Joshua B Wallach, Nicholas A Clark, Timothy A Fitzgerald, Joshua J Whiteley, Shumin Tan, Artem Sokolov, D Michael Ando, Dirk Schnappinger, Kyu Y Rhee, Bree B Aldridge
{"title":"整合多模态测量确定结核病药物作用的关键机制。","authors":"William C Johnson, Ares Alivisatos, Trever C Smith, Nhi Van, Vijay Soni, Joshua B Wallach, Nicholas A Clark, Timothy A Fitzgerald, Joshua J Whiteley, Shumin Tan, Artem Sokolov, D Michael Ando, Dirk Schnappinger, Kyu Y Rhee, Bree B Aldridge","doi":"10.1016/j.cels.2025.101348","DOIUrl":null,"url":null,"abstract":"<p><p>Treatments for tuberculosis remain lengthy, motivating a search for new drugs with novel mechanisms of action. However, it remains challenging to determine the direct targets of a drug and which disrupted cellular processes lead to bacterial killing. We developed a computational tool, DECIPHAER (decoding cross-modal information of pharmacologies via autoencoders), to select the important correlated transcriptional and morphological responses of Mycobacterium tuberculosis to treatment. By finding a reduced feature space, DECIPHAER highlighted essential features of cellular damage. DECIPHAER provides cell-death-relevant insight into uni-modal datasets, enabling interrogation of drug treatment responses for which transcriptional data are unavailable. Using morphological data alone with DECIPHAER, we discovered that respiration inhibition by the polypharmacological drugs SQ109 and BM212 can influence cell death more than their effects on the cell wall. This study demonstrates that DECIPHAER can extract the critical shared information from multi-modal measurements to identify cell-death-relevant mechanisms of TB drugs. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101348"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration of multi-modal measurements identifies critical mechanisms of tuberculosis drug action.\",\"authors\":\"William C Johnson, Ares Alivisatos, Trever C Smith, Nhi Van, Vijay Soni, Joshua B Wallach, Nicholas A Clark, Timothy A Fitzgerald, Joshua J Whiteley, Shumin Tan, Artem Sokolov, D Michael Ando, Dirk Schnappinger, Kyu Y Rhee, Bree B Aldridge\",\"doi\":\"10.1016/j.cels.2025.101348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatments for tuberculosis remain lengthy, motivating a search for new drugs with novel mechanisms of action. However, it remains challenging to determine the direct targets of a drug and which disrupted cellular processes lead to bacterial killing. We developed a computational tool, DECIPHAER (decoding cross-modal information of pharmacologies via autoencoders), to select the important correlated transcriptional and morphological responses of Mycobacterium tuberculosis to treatment. By finding a reduced feature space, DECIPHAER highlighted essential features of cellular damage. DECIPHAER provides cell-death-relevant insight into uni-modal datasets, enabling interrogation of drug treatment responses for which transcriptional data are unavailable. Using morphological data alone with DECIPHAER, we discovered that respiration inhibition by the polypharmacological drugs SQ109 and BM212 can influence cell death more than their effects on the cell wall. This study demonstrates that DECIPHAER can extract the critical shared information from multi-modal measurements to identify cell-death-relevant mechanisms of TB drugs. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101348\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结核病的治疗仍然漫长,这促使人们寻找具有新作用机制的新药。然而,确定药物的直接靶标以及破坏细胞过程导致细菌死亡仍然具有挑战性。我们开发了一种计算工具DECIPHAER(通过自动编码器解码药理学的跨模态信息),以选择结核分枝杆菌重要的相关转录和形态学反应进行治疗。通过寻找一个减少的特征空间,DECIPHAER突出了细胞损伤的基本特征。DECIPHAER提供与细胞死亡相关的单模态数据集,使无法获得转录数据的药物治疗反应的询问成为可能。仅使用形态学数据和DECIPHAER,我们发现多药理学药物SQ109和BM212的呼吸抑制作用对细胞死亡的影响大于对细胞壁的影响。这项研究表明,DECIPHAER可以从多模态测量中提取关键的共享信息,以确定结核病药物的细胞死亡相关机制。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of multi-modal measurements identifies critical mechanisms of tuberculosis drug action.

Treatments for tuberculosis remain lengthy, motivating a search for new drugs with novel mechanisms of action. However, it remains challenging to determine the direct targets of a drug and which disrupted cellular processes lead to bacterial killing. We developed a computational tool, DECIPHAER (decoding cross-modal information of pharmacologies via autoencoders), to select the important correlated transcriptional and morphological responses of Mycobacterium tuberculosis to treatment. By finding a reduced feature space, DECIPHAER highlighted essential features of cellular damage. DECIPHAER provides cell-death-relevant insight into uni-modal datasets, enabling interrogation of drug treatment responses for which transcriptional data are unavailable. Using morphological data alone with DECIPHAER, we discovered that respiration inhibition by the polypharmacological drugs SQ109 and BM212 can influence cell death more than their effects on the cell wall. This study demonstrates that DECIPHAER can extract the critical shared information from multi-modal measurements to identify cell-death-relevant mechanisms of TB drugs. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信