基于红外光谱和机器学习的杏品种分类。

IF 2.9 Q1 AGRICULTURE, MULTIDISCIPLINARY
Jaume Béjar-Grimalt, David Pérez-Guaita*, Ángel Sánchez-Illana*, Rodolfo García-Contreras, Rashmi Kataria, Sylvie Bureau, Miguel de la Guardia and Frédéric Cadet, 
{"title":"基于红外光谱和机器学习的杏品种分类。","authors":"Jaume Béjar-Grimalt,&nbsp;David Pérez-Guaita*,&nbsp;Ángel Sánchez-Illana*,&nbsp;Rodolfo García-Contreras,&nbsp;Rashmi Kataria,&nbsp;Sylvie Bureau,&nbsp;Miguel de la Guardia and Frédéric Cadet,&nbsp;","doi":"10.1021/acsagscitech.5c00068","DOIUrl":null,"url":null,"abstract":"<p >This work aimed to investigate using ATR–FTIR spectroscopy combined with machine learning to classify eight apricot varieties. Traditionally, variety identification relies on physicochemical property measurements, which are time-consuming and require laboratory analysis. Instead, we used the ATR–FTIR spectra from 731 apricots divided into calibration (512) and test (219) sets and three machine learning models (i.e., partial least-squares-discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF)) to accurately predict 97% of the test samples. Additionally, careful inspection of the PLS-DA regression vectors revealed a strong correlation between the spectra and biochemical composition in sugar and organic acids, validating ATR–FTIR spectroscopy as a viable alternative for variety identification. Finally, to validate the results, additional models were constructed using the physicochemical data from the apricots. These reference models were then tested using the same data splits as the spectroscopic data used as a reference method, obtaining similar results with both approaches.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 7","pages":"1373–1381"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of Apricot Varieties by Infrared Spectroscopy and Machine Learning\",\"authors\":\"Jaume Béjar-Grimalt,&nbsp;David Pérez-Guaita*,&nbsp;Ángel Sánchez-Illana*,&nbsp;Rodolfo García-Contreras,&nbsp;Rashmi Kataria,&nbsp;Sylvie Bureau,&nbsp;Miguel de la Guardia and Frédéric Cadet,&nbsp;\",\"doi\":\"10.1021/acsagscitech.5c00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work aimed to investigate using ATR–FTIR spectroscopy combined with machine learning to classify eight apricot varieties. Traditionally, variety identification relies on physicochemical property measurements, which are time-consuming and require laboratory analysis. Instead, we used the ATR–FTIR spectra from 731 apricots divided into calibration (512) and test (219) sets and three machine learning models (i.e., partial least-squares-discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF)) to accurately predict 97% of the test samples. Additionally, careful inspection of the PLS-DA regression vectors revealed a strong correlation between the spectra and biochemical composition in sugar and organic acids, validating ATR–FTIR spectroscopy as a viable alternative for variety identification. Finally, to validate the results, additional models were constructed using the physicochemical data from the apricots. These reference models were then tested using the same data splits as the spectroscopic data used as a reference method, obtaining similar results with both approaches.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"5 7\",\"pages\":\"1373–1381\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在研究利用ATR-FTIR光谱结合机器学习对8个杏品种进行分类。传统上,品种鉴定依赖于物理化学性质的测量,这既耗时又需要实验室分析。相反,我们使用731个杏的ATR-FTIR光谱,分为校准(512)和测试(219)集,以及三种机器学习模型(即偏最小二乘判别分析(PLS-DA),支持向量机(SVM)和随机森林(RF))来准确预测97%的测试样本。此外,对PLS-DA回归向量的仔细检查显示,光谱与糖和有机酸的生化成分之间存在很强的相关性,验证了ATR-FTIR光谱作为品种鉴定的可行替代方法。最后,为了验证结果,利用杏的理化数据构建了附加模型。然后使用与光谱数据相同的数据分割作为参考方法对这些参考模型进行测试,两种方法获得了相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classification of Apricot Varieties by Infrared Spectroscopy and Machine Learning

Classification of Apricot Varieties by Infrared Spectroscopy and Machine Learning

Classification of Apricot Varieties by Infrared Spectroscopy and Machine Learning

Classification of Apricot Varieties by Infrared Spectroscopy and Machine Learning

This work aimed to investigate using ATR–FTIR spectroscopy combined with machine learning to classify eight apricot varieties. Traditionally, variety identification relies on physicochemical property measurements, which are time-consuming and require laboratory analysis. Instead, we used the ATR–FTIR spectra from 731 apricots divided into calibration (512) and test (219) sets and three machine learning models (i.e., partial least-squares-discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF)) to accurately predict 97% of the test samples. Additionally, careful inspection of the PLS-DA regression vectors revealed a strong correlation between the spectra and biochemical composition in sugar and organic acids, validating ATR–FTIR spectroscopy as a viable alternative for variety identification. Finally, to validate the results, additional models were constructed using the physicochemical data from the apricots. These reference models were then tested using the same data splits as the spectroscopic data used as a reference method, obtaining similar results with both approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信