蛋白质压力下的造血干细胞对长寿的启示。

IF 18.1 1区 生物学 Q1 CELL BIOLOGY
André Catic
{"title":"蛋白质压力下的造血干细胞对长寿的启示。","authors":"André Catic","doi":"10.1016/j.tcb.2025.06.006","DOIUrl":null,"url":null,"abstract":"<p><p>Blood stem cells are among the body's longest-living cells despite being highly vulnerable to proteotoxic damage, which accelerates their aging. To maintain protein homeostasis (proteostasis), hematopoietic stem cells (HSCs) employ mechanisms such as reduced translation rates, high chaperone activity, autophagy, and selective protein degradation. These strategies mitigate protein misfolding, maintain quiescence, and preserve regenerative potential. Disruptions in proteostasis can lead to the elimination of impaired HSCs through differentiation or apoptosis, ensuring the integrity of the stem cell pool. Due to the systemic impact of the blood on aging and its experimental and clinical accessibility, investigating HSC proteostasis provides insights into longevity and potential therapeutic strategies. This review examines emerging mechanistic links between proteostasis and HSC fate, concluding with unresolved questions and challenges of the current research.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":18.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453298/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lessons in longevity from blood stem cells under protein stress.\",\"authors\":\"André Catic\",\"doi\":\"10.1016/j.tcb.2025.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood stem cells are among the body's longest-living cells despite being highly vulnerable to proteotoxic damage, which accelerates their aging. To maintain protein homeostasis (proteostasis), hematopoietic stem cells (HSCs) employ mechanisms such as reduced translation rates, high chaperone activity, autophagy, and selective protein degradation. These strategies mitigate protein misfolding, maintain quiescence, and preserve regenerative potential. Disruptions in proteostasis can lead to the elimination of impaired HSCs through differentiation or apoptosis, ensuring the integrity of the stem cell pool. Due to the systemic impact of the blood on aging and its experimental and clinical accessibility, investigating HSC proteostasis provides insights into longevity and potential therapeutic strategies. This review examines emerging mechanistic links between proteostasis and HSC fate, concluding with unresolved questions and challenges of the current research.</p>\",\"PeriodicalId\":56085,\"journal\":{\"name\":\"Trends in Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tcb.2025.06.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2025.06.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血液干细胞是人体寿命最长的细胞之一,尽管它极易受到蛋白质毒性损伤,这会加速它们的衰老。为了维持蛋白质稳态(proteostasis),造血干细胞(hsc)采用降低翻译率、高伴侣活性、自噬和选择性蛋白质降解等机制。这些策略减轻了蛋白质的错误折叠,维持了沉默,并保持了再生潜力。蛋白酶抑制的破坏可以通过分化或凋亡导致受损造血干细胞的消除,从而确保干细胞池的完整性。由于血液对衰老的全身性影响及其实验和临床可及性,研究HSC蛋白稳态提供了长寿和潜在治疗策略的见解。这篇综述探讨了蛋白质抑制和HSC命运之间的新机制联系,总结了当前研究中尚未解决的问题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lessons in longevity from blood stem cells under protein stress.

Blood stem cells are among the body's longest-living cells despite being highly vulnerable to proteotoxic damage, which accelerates their aging. To maintain protein homeostasis (proteostasis), hematopoietic stem cells (HSCs) employ mechanisms such as reduced translation rates, high chaperone activity, autophagy, and selective protein degradation. These strategies mitigate protein misfolding, maintain quiescence, and preserve regenerative potential. Disruptions in proteostasis can lead to the elimination of impaired HSCs through differentiation or apoptosis, ensuring the integrity of the stem cell pool. Due to the systemic impact of the blood on aging and its experimental and clinical accessibility, investigating HSC proteostasis provides insights into longevity and potential therapeutic strategies. This review examines emerging mechanistic links between proteostasis and HSC fate, concluding with unresolved questions and challenges of the current research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Cell Biology
Trends in Cell Biology 生物-细胞生物学
CiteScore
32.00
自引率
0.50%
发文量
160
审稿时长
61 days
期刊介绍: Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信