{"title":"乳腺癌微环境的关键参与者:从成纤维细胞到免疫细胞。","authors":"Sacide Çakal, Buket Er Urgancı, Selda Şimşek","doi":"10.5306/wjco.v16.i7.107339","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the most common malignancies worldwide and is a major cause of cancer-related mortality among women. Beyond tumor cells, the tumor microenvironment (TME) also plays an important role in cancer progression, therapy resistance, and metastasis. The TME is a complex ecosystem consisting of stromal and immune cells, extracellular matrix (ECM), and various signaling molecules that dynamically interact with tumor cells. Cancer-associated fibroblasts remodel the ECM and secrete growth factors that promote tumor growth and invasion. Immune cells, such as tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells, often contribute to an immunosuppressive environment that hinders anti-tumor immune responses. The ECM provides structural support and acts as a reservoir for signaling molecules that influence cancer cell behavior. These components evolve together with tumor cells, facilitating immune evasion, therapy resistance, and epithelial-to-mesenchymal transition, which promotes metastasis. Understanding these interactions is necessary to develop novel therapeutic strategies that target both tumor and microenvironmental components. This minireview highlights the key stromal and immune elements within the breast cancer microenvironment, discussing their individual and collective roles in tumor progression and clinical outcomes, while emphasizing emerging therapeutic approaches aiming to reprogram the TME to improve treatment efficacy.</p>","PeriodicalId":23802,"journal":{"name":"World journal of clinical oncology","volume":"16 7","pages":"107339"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304906/pdf/","citationCount":"0","resultStr":"{\"title\":\"Key players in the breast cancer microenvironment: From fibroblasts to immune cells.\",\"authors\":\"Sacide Çakal, Buket Er Urgancı, Selda Şimşek\",\"doi\":\"10.5306/wjco.v16.i7.107339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is one of the most common malignancies worldwide and is a major cause of cancer-related mortality among women. Beyond tumor cells, the tumor microenvironment (TME) also plays an important role in cancer progression, therapy resistance, and metastasis. The TME is a complex ecosystem consisting of stromal and immune cells, extracellular matrix (ECM), and various signaling molecules that dynamically interact with tumor cells. Cancer-associated fibroblasts remodel the ECM and secrete growth factors that promote tumor growth and invasion. Immune cells, such as tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells, often contribute to an immunosuppressive environment that hinders anti-tumor immune responses. The ECM provides structural support and acts as a reservoir for signaling molecules that influence cancer cell behavior. These components evolve together with tumor cells, facilitating immune evasion, therapy resistance, and epithelial-to-mesenchymal transition, which promotes metastasis. Understanding these interactions is necessary to develop novel therapeutic strategies that target both tumor and microenvironmental components. This minireview highlights the key stromal and immune elements within the breast cancer microenvironment, discussing their individual and collective roles in tumor progression and clinical outcomes, while emphasizing emerging therapeutic approaches aiming to reprogram the TME to improve treatment efficacy.</p>\",\"PeriodicalId\":23802,\"journal\":{\"name\":\"World journal of clinical oncology\",\"volume\":\"16 7\",\"pages\":\"107339\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of clinical oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5306/wjco.v16.i7.107339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of clinical oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5306/wjco.v16.i7.107339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Key players in the breast cancer microenvironment: From fibroblasts to immune cells.
Breast cancer is one of the most common malignancies worldwide and is a major cause of cancer-related mortality among women. Beyond tumor cells, the tumor microenvironment (TME) also plays an important role in cancer progression, therapy resistance, and metastasis. The TME is a complex ecosystem consisting of stromal and immune cells, extracellular matrix (ECM), and various signaling molecules that dynamically interact with tumor cells. Cancer-associated fibroblasts remodel the ECM and secrete growth factors that promote tumor growth and invasion. Immune cells, such as tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells, often contribute to an immunosuppressive environment that hinders anti-tumor immune responses. The ECM provides structural support and acts as a reservoir for signaling molecules that influence cancer cell behavior. These components evolve together with tumor cells, facilitating immune evasion, therapy resistance, and epithelial-to-mesenchymal transition, which promotes metastasis. Understanding these interactions is necessary to develop novel therapeutic strategies that target both tumor and microenvironmental components. This minireview highlights the key stromal and immune elements within the breast cancer microenvironment, discussing their individual and collective roles in tumor progression and clinical outcomes, while emphasizing emerging therapeutic approaches aiming to reprogram the TME to improve treatment efficacy.
期刊介绍:
The WJCO is a high-quality, peer reviewed, open-access journal. The primary task of WJCO is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of oncology. In order to promote productive academic communication, the peer review process for the WJCO is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJCO are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in oncology. Scope: Art of Oncology, Biology of Neoplasia, Breast Cancer, Cancer Prevention and Control, Cancer-Related Complications, Diagnosis in Oncology, Gastrointestinal Cancer, Genetic Testing For Cancer, Gynecologic Cancer, Head and Neck Cancer, Hematologic Malignancy, Lung Cancer, Melanoma, Molecular Oncology, Neurooncology, Palliative and Supportive Care, Pediatric Oncology, Surgical Oncology, Translational Oncology, and Urologic Oncology.