{"title":"Phytobacter sp. RSE02是一种具有人体益生菌特征和降胆固醇能力的水稻种子内生植物益生菌。","authors":"Santosh Kumar Jana, Rajarshi Bhattacharya, Sunanda Mukherjee, Samudra Gupta, Subhra Prakash Hui, Ansuman Chattopadhyay, Swadesh Ranjan Biswas, Sukhendu Mandal","doi":"10.1038/s41598-025-11212-6","DOIUrl":null,"url":null,"abstract":"<p><p>Research on seed microbiota has gained significant attention due to its role as a primary inoculum that enhances seedling growth, fitness, and productivity. This study explores the characteristics of the plant-probiotic seed-endophyte Phytobacter sp. RSE02, which demonstrates distinctive beneficial probiotic features in animal models. We examine the safety and probiotic potential of RSE02 in human cell lines, zebrafish, and mice. Notably, RSE02 can utilize cholesterol as its sole carbon source; however, it does not adhere to the Caco-2 cell line or the zebrafish gut. Importantly, RSE02 is non-toxic across all tested models. We further explore its cholesterol-utilizing ability to determine its efficacy in mitigating hypercholesterolemia and body fat deposits in mice when administered orally. In a high-fat diet mouse model, RSE02 significantly lowered blood cholesterol levels and reduced body weight, peritoneal fat deposits, and liver weight. Additionally, the treatment with RSE02 led to decreased levels of total blood protein, MDA, and GSH in high-fat diet mice. Genomic analysis of RSE02 revealed the absence of virulence or toxin-producing genes while identifying gene clusters responsible for synthesizing key vitamins such as folate, biotin, and vitamin B12. The findings highlight the dual functionality of Phytobacter sp. RSE02 in enhancing plant and animal health, challenging traditional notions of probiotics, and offering prospects for innovative solutions in sustainable agriculture and cardiovascular health interventions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27865"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311059/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phytobacter sp. RSE02 is a rice seed endophytic plant probiotic bacterium with human probiotic features and cholesterol-lowering ability.\",\"authors\":\"Santosh Kumar Jana, Rajarshi Bhattacharya, Sunanda Mukherjee, Samudra Gupta, Subhra Prakash Hui, Ansuman Chattopadhyay, Swadesh Ranjan Biswas, Sukhendu Mandal\",\"doi\":\"10.1038/s41598-025-11212-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on seed microbiota has gained significant attention due to its role as a primary inoculum that enhances seedling growth, fitness, and productivity. This study explores the characteristics of the plant-probiotic seed-endophyte Phytobacter sp. RSE02, which demonstrates distinctive beneficial probiotic features in animal models. We examine the safety and probiotic potential of RSE02 in human cell lines, zebrafish, and mice. Notably, RSE02 can utilize cholesterol as its sole carbon source; however, it does not adhere to the Caco-2 cell line or the zebrafish gut. Importantly, RSE02 is non-toxic across all tested models. We further explore its cholesterol-utilizing ability to determine its efficacy in mitigating hypercholesterolemia and body fat deposits in mice when administered orally. In a high-fat diet mouse model, RSE02 significantly lowered blood cholesterol levels and reduced body weight, peritoneal fat deposits, and liver weight. Additionally, the treatment with RSE02 led to decreased levels of total blood protein, MDA, and GSH in high-fat diet mice. Genomic analysis of RSE02 revealed the absence of virulence or toxin-producing genes while identifying gene clusters responsible for synthesizing key vitamins such as folate, biotin, and vitamin B12. The findings highlight the dual functionality of Phytobacter sp. RSE02 in enhancing plant and animal health, challenging traditional notions of probiotics, and offering prospects for innovative solutions in sustainable agriculture and cardiovascular health interventions.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27865\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-11212-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11212-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Phytobacter sp. RSE02 is a rice seed endophytic plant probiotic bacterium with human probiotic features and cholesterol-lowering ability.
Research on seed microbiota has gained significant attention due to its role as a primary inoculum that enhances seedling growth, fitness, and productivity. This study explores the characteristics of the plant-probiotic seed-endophyte Phytobacter sp. RSE02, which demonstrates distinctive beneficial probiotic features in animal models. We examine the safety and probiotic potential of RSE02 in human cell lines, zebrafish, and mice. Notably, RSE02 can utilize cholesterol as its sole carbon source; however, it does not adhere to the Caco-2 cell line or the zebrafish gut. Importantly, RSE02 is non-toxic across all tested models. We further explore its cholesterol-utilizing ability to determine its efficacy in mitigating hypercholesterolemia and body fat deposits in mice when administered orally. In a high-fat diet mouse model, RSE02 significantly lowered blood cholesterol levels and reduced body weight, peritoneal fat deposits, and liver weight. Additionally, the treatment with RSE02 led to decreased levels of total blood protein, MDA, and GSH in high-fat diet mice. Genomic analysis of RSE02 revealed the absence of virulence or toxin-producing genes while identifying gene clusters responsible for synthesizing key vitamins such as folate, biotin, and vitamin B12. The findings highlight the dual functionality of Phytobacter sp. RSE02 in enhancing plant and animal health, challenging traditional notions of probiotics, and offering prospects for innovative solutions in sustainable agriculture and cardiovascular health interventions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.