{"title":"基于常规血液和生化测试数据的神经系统疾病诊断机器学习模型。","authors":"Wanshan Ning, Zhicheng Wang, Ying Gu, Lindan Huang, Shuai Liu, Qun Chen, Yunyun Yang, Guolin Hong","doi":"10.1038/s41598-025-09439-4","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, nervous system diseases are the leading cause of disability-adjusted life-years and the second leading cause of mortality in the world. Traditional diagnostic methods for nervous system diseases are expensive. So this study aimed to construct machine learning models using the convenient blood routine and biochemical detection data for diagnosis of nervous system diseases. After the data preprocessing, 25,794 healthy people and 7518 nervous system disease patients with the blood routine and biochemical detection data were utilized for our study. We selected logistic regression, random forest, support vector machine, eXtreme Gradient Boosting (XGBoost), and deep neural network to construct models. Finally, the SHAP algorithm was used to interpret models. The nervous system disease prediction model constructed by XGBoost possessed the best performance (AUC: 0.9782). And the most models of distinguishing various nervous system diseases also had good performance, the model performance of distinguishing neuromyelitis optica from other nervous system diseases was the best (AUC: 0.9095). The model interpretation by SHAP algorithm indicated features from biochemical detection made major contributions to predicting nervous system disease. The present study constructed multiple models using 52 features from the blood routine and biochemical detection data for diagnosis of various nervous system diseases. Meanwhile, distinct hematologic features of various nervous system diseases also were explored. This cost-effective work will benefit more people and assist in diagnosis and prevention of nervous system diseases.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27857"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning models based on routine blood and biochemical test data for diagnosis of neurological diseases.\",\"authors\":\"Wanshan Ning, Zhicheng Wang, Ying Gu, Lindan Huang, Shuai Liu, Qun Chen, Yunyun Yang, Guolin Hong\",\"doi\":\"10.1038/s41598-025-09439-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Globally, nervous system diseases are the leading cause of disability-adjusted life-years and the second leading cause of mortality in the world. Traditional diagnostic methods for nervous system diseases are expensive. So this study aimed to construct machine learning models using the convenient blood routine and biochemical detection data for diagnosis of nervous system diseases. After the data preprocessing, 25,794 healthy people and 7518 nervous system disease patients with the blood routine and biochemical detection data were utilized for our study. We selected logistic regression, random forest, support vector machine, eXtreme Gradient Boosting (XGBoost), and deep neural network to construct models. Finally, the SHAP algorithm was used to interpret models. The nervous system disease prediction model constructed by XGBoost possessed the best performance (AUC: 0.9782). And the most models of distinguishing various nervous system diseases also had good performance, the model performance of distinguishing neuromyelitis optica from other nervous system diseases was the best (AUC: 0.9095). The model interpretation by SHAP algorithm indicated features from biochemical detection made major contributions to predicting nervous system disease. The present study constructed multiple models using 52 features from the blood routine and biochemical detection data for diagnosis of various nervous system diseases. Meanwhile, distinct hematologic features of various nervous system diseases also were explored. This cost-effective work will benefit more people and assist in diagnosis and prevention of nervous system diseases.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27857\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09439-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09439-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Machine learning models based on routine blood and biochemical test data for diagnosis of neurological diseases.
Globally, nervous system diseases are the leading cause of disability-adjusted life-years and the second leading cause of mortality in the world. Traditional diagnostic methods for nervous system diseases are expensive. So this study aimed to construct machine learning models using the convenient blood routine and biochemical detection data for diagnosis of nervous system diseases. After the data preprocessing, 25,794 healthy people and 7518 nervous system disease patients with the blood routine and biochemical detection data were utilized for our study. We selected logistic regression, random forest, support vector machine, eXtreme Gradient Boosting (XGBoost), and deep neural network to construct models. Finally, the SHAP algorithm was used to interpret models. The nervous system disease prediction model constructed by XGBoost possessed the best performance (AUC: 0.9782). And the most models of distinguishing various nervous system diseases also had good performance, the model performance of distinguishing neuromyelitis optica from other nervous system diseases was the best (AUC: 0.9095). The model interpretation by SHAP algorithm indicated features from biochemical detection made major contributions to predicting nervous system disease. The present study constructed multiple models using 52 features from the blood routine and biochemical detection data for diagnosis of various nervous system diseases. Meanwhile, distinct hematologic features of various nervous system diseases also were explored. This cost-effective work will benefit more people and assist in diagnosis and prevention of nervous system diseases.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.