Shadi Dorosti, Thomas Landry, Kimberly Brewer, Alyssa Forbes, Christa Davis, Jeremy Brown
{"title":"基于人工智能的小鼠脑肿瘤高分辨率超声数据分割。","authors":"Shadi Dorosti, Thomas Landry, Kimberly Brewer, Alyssa Forbes, Christa Davis, Jeremy Brown","doi":"10.1038/s41597-025-05619-z","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, making effective treatments essential to improve patient survival. To advance the understanding of GBM and develop more effective therapies, preclinical studies commonly use mouse models due to their genetic and physiological similarities to humans. In particular, the GL261 mouse glioma model is employed for its reproducible tumor growth and ability to mimic key aspects of human gliomas. Ultrasound imaging is a valuable modality in preclinical studies, offering real-time, non-invasive tumor monitoring and facilitating treatment response assessment. Furthermore, its potential therapeutic applications, such as in tumor ablation, expand its utility in preclinical studies. However, real-time segmentation of GL261 tumors during surgery introduces significant complexities, such as precise tumor boundary delineation and maintaining processing efficiency. Automated segmentation offers a solution, but its success relies on high-quality datasets with precise labeling. Our study introduces the first publicly available ultrasound dataset specifically developed to improve tumor segmentation in GL261 glioblastomas, providing 1,856 annotated images to support AI model development in preclinical research. This dataset bridges preclinical insights and clinical practice, laying the foundation for developing more accurate and effective tumor resection techniques.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1322"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311121/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Ultrasound Data for AI-Based Segmentation in Mouse Brain Tumor.\",\"authors\":\"Shadi Dorosti, Thomas Landry, Kimberly Brewer, Alyssa Forbes, Christa Davis, Jeremy Brown\",\"doi\":\"10.1038/s41597-025-05619-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, making effective treatments essential to improve patient survival. To advance the understanding of GBM and develop more effective therapies, preclinical studies commonly use mouse models due to their genetic and physiological similarities to humans. In particular, the GL261 mouse glioma model is employed for its reproducible tumor growth and ability to mimic key aspects of human gliomas. Ultrasound imaging is a valuable modality in preclinical studies, offering real-time, non-invasive tumor monitoring and facilitating treatment response assessment. Furthermore, its potential therapeutic applications, such as in tumor ablation, expand its utility in preclinical studies. However, real-time segmentation of GL261 tumors during surgery introduces significant complexities, such as precise tumor boundary delineation and maintaining processing efficiency. Automated segmentation offers a solution, but its success relies on high-quality datasets with precise labeling. Our study introduces the first publicly available ultrasound dataset specifically developed to improve tumor segmentation in GL261 glioblastomas, providing 1,856 annotated images to support AI model development in preclinical research. This dataset bridges preclinical insights and clinical practice, laying the foundation for developing more accurate and effective tumor resection techniques.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1322\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05619-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05619-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
High-Resolution Ultrasound Data for AI-Based Segmentation in Mouse Brain Tumor.
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, making effective treatments essential to improve patient survival. To advance the understanding of GBM and develop more effective therapies, preclinical studies commonly use mouse models due to their genetic and physiological similarities to humans. In particular, the GL261 mouse glioma model is employed for its reproducible tumor growth and ability to mimic key aspects of human gliomas. Ultrasound imaging is a valuable modality in preclinical studies, offering real-time, non-invasive tumor monitoring and facilitating treatment response assessment. Furthermore, its potential therapeutic applications, such as in tumor ablation, expand its utility in preclinical studies. However, real-time segmentation of GL261 tumors during surgery introduces significant complexities, such as precise tumor boundary delineation and maintaining processing efficiency. Automated segmentation offers a solution, but its success relies on high-quality datasets with precise labeling. Our study introduces the first publicly available ultrasound dataset specifically developed to improve tumor segmentation in GL261 glioblastomas, providing 1,856 annotated images to support AI model development in preclinical research. This dataset bridges preclinical insights and clinical practice, laying the foundation for developing more accurate and effective tumor resection techniques.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.