早期胃癌和癌前病变的完整注释病理切片数据集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chunbao Wang, Jiusong Ge, Yi Niu, Caixia Ding, Yangyang Fan, Hongyun Chang, Zhe Yang, Caihong Ran, Xiali Teng, Xiaolin Wang, Lianlian Wu, Zeyu Gao, Chen Li
{"title":"早期胃癌和癌前病变的完整注释病理切片数据集。","authors":"Chunbao Wang, Jiusong Ge, Yi Niu, Caixia Ding, Yangyang Fan, Hongyun Chang, Zhe Yang, Caihong Ran, Xiali Teng, Xiaolin Wang, Lianlian Wu, Zeyu Gao, Chen Li","doi":"10.1038/s41597-025-05679-1","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer, a significant global health concern, exhibits high morbidity and mortality, especially in advanced stages. Timely diagnosis and intervention are crucial for improving patient outcomes, with Endoscopic Submucosal Dissection (ESD) playing a pivotal role in precise, minimally invasive early-stage treatments. Despite its importance, challenges include significant interobserver variability among pathologists and the intensive labor required for detailed pathological analysis of ESD specimens impede optimal outcomes. Artificial Intelligence (AI) offers promising solutions to these challenges, yet its advancement is limited by the scarcity of comprehensive, annotated pathological datasets. In this paper, we curate a fully annotated pathology slide dataset for ESD specimen examination. This dataset not only poses a challenging task for the computational pathology field but also enables precise detection of precancerous stages and accurate quantification of lesion distribution in patients with early-stage gastric lesions. Furthermore, it enhances the correlation between endoscopic findings and pathological interpretations, thereby advancing precision medicine strategies in the prevention and treatment of early gastric cancer.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1326"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311038/pdf/","citationCount":"0","resultStr":"{\"title\":\"A fully annotated pathology slide dataset for early gastric cancer and precancerous lesions.\",\"authors\":\"Chunbao Wang, Jiusong Ge, Yi Niu, Caixia Ding, Yangyang Fan, Hongyun Chang, Zhe Yang, Caihong Ran, Xiali Teng, Xiaolin Wang, Lianlian Wu, Zeyu Gao, Chen Li\",\"doi\":\"10.1038/s41597-025-05679-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer, a significant global health concern, exhibits high morbidity and mortality, especially in advanced stages. Timely diagnosis and intervention are crucial for improving patient outcomes, with Endoscopic Submucosal Dissection (ESD) playing a pivotal role in precise, minimally invasive early-stage treatments. Despite its importance, challenges include significant interobserver variability among pathologists and the intensive labor required for detailed pathological analysis of ESD specimens impede optimal outcomes. Artificial Intelligence (AI) offers promising solutions to these challenges, yet its advancement is limited by the scarcity of comprehensive, annotated pathological datasets. In this paper, we curate a fully annotated pathology slide dataset for ESD specimen examination. This dataset not only poses a challenging task for the computational pathology field but also enables precise detection of precancerous stages and accurate quantification of lesion distribution in patients with early-stage gastric lesions. Furthermore, it enhances the correlation between endoscopic findings and pathological interpretations, thereby advancing precision medicine strategies in the prevention and treatment of early gastric cancer.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1326\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05679-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05679-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

胃癌是一个重要的全球健康问题,具有高发病率和死亡率,特别是在晚期。及时诊断和干预对于改善患者预后至关重要,内镜下粘膜剥离术(ESD)在精确、微创的早期治疗中起着关键作用。尽管它很重要,但挑战包括病理学家之间存在显著的观察者差异,以及对ESD标本进行详细病理分析所需的大量劳动阻碍了最佳结果。人工智能(AI)为这些挑战提供了有希望的解决方案,但它的进步受到缺乏全面的、带注释的病理数据集的限制。在本文中,我们策划了一个完整注释的病理切片数据集,用于ESD标本检查。该数据集不仅为计算病理学领域提出了一项具有挑战性的任务,而且能够精确检测早期胃病变患者的癌前阶段和准确量化病变分布。此外,它还增强了内镜检查结果与病理解释之间的相关性,从而推进了早期胃癌预防和治疗的精准医学策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A fully annotated pathology slide dataset for early gastric cancer and precancerous lesions.

A fully annotated pathology slide dataset for early gastric cancer and precancerous lesions.

A fully annotated pathology slide dataset for early gastric cancer and precancerous lesions.

A fully annotated pathology slide dataset for early gastric cancer and precancerous lesions.

Gastric cancer, a significant global health concern, exhibits high morbidity and mortality, especially in advanced stages. Timely diagnosis and intervention are crucial for improving patient outcomes, with Endoscopic Submucosal Dissection (ESD) playing a pivotal role in precise, minimally invasive early-stage treatments. Despite its importance, challenges include significant interobserver variability among pathologists and the intensive labor required for detailed pathological analysis of ESD specimens impede optimal outcomes. Artificial Intelligence (AI) offers promising solutions to these challenges, yet its advancement is limited by the scarcity of comprehensive, annotated pathological datasets. In this paper, we curate a fully annotated pathology slide dataset for ESD specimen examination. This dataset not only poses a challenging task for the computational pathology field but also enables precise detection of precancerous stages and accurate quantification of lesion distribution in patients with early-stage gastric lesions. Furthermore, it enhances the correlation between endoscopic findings and pathological interpretations, thereby advancing precision medicine strategies in the prevention and treatment of early gastric cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信