Jiayu Wang, Miao Yu, Hangbo Liu, Kai Sun, Chenxin Geng, Haochen Liu, Hailan Feng, Yang Liu, Hu Zhao, Dong Han
{"title":"Kdf1通过PI3K/AKT/mTOR信号轴调控臼齿尖的形态发生。","authors":"Jiayu Wang, Miao Yu, Hangbo Liu, Kai Sun, Chenxin Geng, Haochen Liu, Hailan Feng, Yang Liu, Hu Zhao, Dong Han","doi":"10.1111/cpr.70108","DOIUrl":null,"url":null,"abstract":"<p><p>Keratinocyte differentiation factor 1 (Kdf1) reportedly plays a significant role in enamel formation. In terms of tooth morphogenesis, human KDF1 variants are associated with crown morphological abnormalities, suggesting that Kdf1 may also be essential for tooth morphogenesis. However, the involvement of Kdf1 in tooth morphogenesis and its underlying mechanisms remains unclear. In this study, we observed that mice lacking epithelial Kdf1 (K14-Cre;Kdf1<sup>fl/fl</sup>) displayed rounded and blunt molar cusps, resembling the morphological anomalies observed in patients with Kdf1 variants. 5-Ethynyl-2'-deoxyuridine assays revealed increased proliferative activity of the inner enamel epithelial (IEE) cells in the cusp region of K14-Cre;Kdf1<sup>fl/fl</sup> mice during the bell stage. RNA sequencing and western blot analysis confirmed the overactivation of PI3K/AKT/mTOR signalling in the molar IEE cells of K14-Cre;Kdf1<sup>fl/fl</sup> mice. Furthermore, in utero microcapillary injection of the PI3K/AKT/mTOR pathway inhibitor LY294002 partially rescued the molar cusp defects in K14-Cre;Kdf1<sup>fl/fl</sup> mice. Collectively, our findings provide in vivo evidence supporting the regulatory role of Kdf1 in molar cusp morphogenesis, highlighting its function in modulating dental epithelial cell proliferation via the PI3K/AKT/mTOR signalling pathway.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70108"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kdf1 Regulates Molar Cusp Morphogenesis via the PI3K/AKT/mTOR Signalling Axis.\",\"authors\":\"Jiayu Wang, Miao Yu, Hangbo Liu, Kai Sun, Chenxin Geng, Haochen Liu, Hailan Feng, Yang Liu, Hu Zhao, Dong Han\",\"doi\":\"10.1111/cpr.70108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Keratinocyte differentiation factor 1 (Kdf1) reportedly plays a significant role in enamel formation. In terms of tooth morphogenesis, human KDF1 variants are associated with crown morphological abnormalities, suggesting that Kdf1 may also be essential for tooth morphogenesis. However, the involvement of Kdf1 in tooth morphogenesis and its underlying mechanisms remains unclear. In this study, we observed that mice lacking epithelial Kdf1 (K14-Cre;Kdf1<sup>fl/fl</sup>) displayed rounded and blunt molar cusps, resembling the morphological anomalies observed in patients with Kdf1 variants. 5-Ethynyl-2'-deoxyuridine assays revealed increased proliferative activity of the inner enamel epithelial (IEE) cells in the cusp region of K14-Cre;Kdf1<sup>fl/fl</sup> mice during the bell stage. RNA sequencing and western blot analysis confirmed the overactivation of PI3K/AKT/mTOR signalling in the molar IEE cells of K14-Cre;Kdf1<sup>fl/fl</sup> mice. Furthermore, in utero microcapillary injection of the PI3K/AKT/mTOR pathway inhibitor LY294002 partially rescued the molar cusp defects in K14-Cre;Kdf1<sup>fl/fl</sup> mice. Collectively, our findings provide in vivo evidence supporting the regulatory role of Kdf1 in molar cusp morphogenesis, highlighting its function in modulating dental epithelial cell proliferation via the PI3K/AKT/mTOR signalling pathway.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70108\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70108\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70108","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Kdf1 Regulates Molar Cusp Morphogenesis via the PI3K/AKT/mTOR Signalling Axis.
Keratinocyte differentiation factor 1 (Kdf1) reportedly plays a significant role in enamel formation. In terms of tooth morphogenesis, human KDF1 variants are associated with crown morphological abnormalities, suggesting that Kdf1 may also be essential for tooth morphogenesis. However, the involvement of Kdf1 in tooth morphogenesis and its underlying mechanisms remains unclear. In this study, we observed that mice lacking epithelial Kdf1 (K14-Cre;Kdf1fl/fl) displayed rounded and blunt molar cusps, resembling the morphological anomalies observed in patients with Kdf1 variants. 5-Ethynyl-2'-deoxyuridine assays revealed increased proliferative activity of the inner enamel epithelial (IEE) cells in the cusp region of K14-Cre;Kdf1fl/fl mice during the bell stage. RNA sequencing and western blot analysis confirmed the overactivation of PI3K/AKT/mTOR signalling in the molar IEE cells of K14-Cre;Kdf1fl/fl mice. Furthermore, in utero microcapillary injection of the PI3K/AKT/mTOR pathway inhibitor LY294002 partially rescued the molar cusp defects in K14-Cre;Kdf1fl/fl mice. Collectively, our findings provide in vivo evidence supporting the regulatory role of Kdf1 in molar cusp morphogenesis, highlighting its function in modulating dental epithelial cell proliferation via the PI3K/AKT/mTOR signalling pathway.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.