基于苯并噻二唑纳米颗粒负载水凝胶的口腔癌增强光热疗法。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zi Fu, Ling Huang, Xinyu Zhang, Zhichao Zheng, Lihong Wu, Huade Zheng
{"title":"基于苯并噻二唑纳米颗粒负载水凝胶的口腔癌增强光热疗法。","authors":"Zi Fu, Ling Huang, Xinyu Zhang, Zhichao Zheng, Lihong Wu, Huade Zheng","doi":"10.1080/21691401.2025.2540648","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in photothermal therapy (PTT) using nanoparticles (NPs), particularly benzothiadiazole-based agents, offer promising strategies for targeted cancer treatment with enhanced efficacy and reduced side effects. However, challenges such as poor stability and limited retention at the tumour site persist, necessitating the development of advanced delivery systems to optimize the effectiveness of these NPs in clinical applications. In this study, we synthesized a benzothiadiazole-based photothermal small molecule, BPD-BBTD NPs, with a median particle size of 116 nm. And subsequently incorporated them into a chitosan (CS) and hydroxyethyl cellulose (HEC) matrix to form a novel hydrogel, BPD-BBTD NPs @CS-HEC. The photothermal efficacy of both the NPs and the hydrogel against oral squamous cell carcinoma (OSCC) was further explored. The photothermal conversion efficiency of BPD BBTD NPs small molecules can reach 40%. When the concentration is 400 μg/mL, the temperature can reach 75 °C after 3 min of NIR irradiation. The hydrogel's dense network structure was designed to effectively retain heat within its matrix, thus enhancing the photothermal effect and reducing heat dissipation. Our <i>in vitro</i> experiments demonstrated that BPD-BBTD NPs significantly inhibited the proliferation and migration of OSCC cells while exerting minimal cytotoxic effects on normal cells. The survival rates of mouse fibroblasts (L929) and human oral keratinocytes (Hok) were over 80%. Mechanistic investigations indicated that under near-infra-red (NIR) light irradiation, the NPs increased the production of reactive oxygen species (ROS) in OSCC cells. This ROS upregulation further led to apoptosis in OSCC cells, primarily through the reduction of mitochondrial membrane potential, a consequence of heat stress induced by NIR irradiation. Furthermore, the anti-tumour efficacy of BPD-BBTD NPs @CS-HEC hydrogel was validated using an <i>in situ</i> mouse model of OSCC. Furthermore, the relative change rate of tumour volume before and after treatment was reduced by 94.4%. In conclusion, our findings suggest that BPD-BBTD NPs @CS-HEC hydrogels, under the activation of NIR light, represent a promising biomaterial for the targeted treatment of OSCC, offering a synergistic approach by combining PTT with localized, sustained treatment delivery.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"345-360"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photothermal therapy for oral cancer using benzothiadiazole-based nanoparticle-loaded hydrogels.\",\"authors\":\"Zi Fu, Ling Huang, Xinyu Zhang, Zhichao Zheng, Lihong Wu, Huade Zheng\",\"doi\":\"10.1080/21691401.2025.2540648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in photothermal therapy (PTT) using nanoparticles (NPs), particularly benzothiadiazole-based agents, offer promising strategies for targeted cancer treatment with enhanced efficacy and reduced side effects. However, challenges such as poor stability and limited retention at the tumour site persist, necessitating the development of advanced delivery systems to optimize the effectiveness of these NPs in clinical applications. In this study, we synthesized a benzothiadiazole-based photothermal small molecule, BPD-BBTD NPs, with a median particle size of 116 nm. And subsequently incorporated them into a chitosan (CS) and hydroxyethyl cellulose (HEC) matrix to form a novel hydrogel, BPD-BBTD NPs @CS-HEC. The photothermal efficacy of both the NPs and the hydrogel against oral squamous cell carcinoma (OSCC) was further explored. The photothermal conversion efficiency of BPD BBTD NPs small molecules can reach 40%. When the concentration is 400 μg/mL, the temperature can reach 75 °C after 3 min of NIR irradiation. The hydrogel's dense network structure was designed to effectively retain heat within its matrix, thus enhancing the photothermal effect and reducing heat dissipation. Our <i>in vitro</i> experiments demonstrated that BPD-BBTD NPs significantly inhibited the proliferation and migration of OSCC cells while exerting minimal cytotoxic effects on normal cells. The survival rates of mouse fibroblasts (L929) and human oral keratinocytes (Hok) were over 80%. Mechanistic investigations indicated that under near-infra-red (NIR) light irradiation, the NPs increased the production of reactive oxygen species (ROS) in OSCC cells. This ROS upregulation further led to apoptosis in OSCC cells, primarily through the reduction of mitochondrial membrane potential, a consequence of heat stress induced by NIR irradiation. Furthermore, the anti-tumour efficacy of BPD-BBTD NPs @CS-HEC hydrogel was validated using an <i>in situ</i> mouse model of OSCC. Furthermore, the relative change rate of tumour volume before and after treatment was reduced by 94.4%. In conclusion, our findings suggest that BPD-BBTD NPs @CS-HEC hydrogels, under the activation of NIR light, represent a promising biomaterial for the targeted treatment of OSCC, offering a synergistic approach by combining PTT with localized, sustained treatment delivery.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"345-360\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2540648\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2540648","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

使用纳米颗粒(NPs)的光热疗法(PTT)的最新进展,特别是基于苯并噻二唑的药物,为靶向癌症治疗提供了有希望的策略,具有增强的疗效和减少的副作用。然而,诸如稳定性差和肿瘤部位保留有限等挑战仍然存在,需要开发先进的递送系统来优化这些NPs在临床应用中的有效性。在本研究中,我们合成了一种基于苯并噻二唑的光热小分子BPD-BBTD NPs,中位粒径为116 nm。随后将它们掺入壳聚糖(CS)和羟乙基纤维素(HEC)基质中,形成一种新型水凝胶BPD-BBTD NPs @CS-HEC。进一步探讨NPs和水凝胶对口腔鳞状细胞癌(OSCC)的光热作用。BPD btd NPs小分子光热转换效率可达40%。当浓度为400 μg/mL时,近红外照射3 min后温度可达75℃。水凝胶致密的网状结构旨在有效地将热量保留在其基质内,从而增强光热效应,减少散热。我们的体外实验表明,BPD-BBTD NPs显著抑制OSCC细胞的增殖和迁移,而对正常细胞的细胞毒性作用最小。小鼠成纤维细胞(L929)和人口腔角质形成细胞(Hok)的存活率均在80%以上。机制研究表明,在近红外(NIR)光照射下,NPs增加了OSCC细胞中活性氧(ROS)的产生。这种ROS上调进一步导致OSCC细胞凋亡,主要是通过近红外照射引起的热应激导致的线粒体膜电位降低。此外,通过原位小鼠OSCC模型验证了BPD-BBTD NPs @CS-HEC水凝胶的抗肿瘤功效。治疗前后肿瘤体积相对变化率降低94.4%。总之,我们的研究结果表明,在近红外光的激活下,BPD-BBTD NPs @CS-HEC水凝胶是一种有前景的靶向治疗OSCC的生物材料,通过将PTT与局部持续治疗相结合,提供了一种协同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced photothermal therapy for oral cancer using benzothiadiazole-based nanoparticle-loaded hydrogels.

Recent advances in photothermal therapy (PTT) using nanoparticles (NPs), particularly benzothiadiazole-based agents, offer promising strategies for targeted cancer treatment with enhanced efficacy and reduced side effects. However, challenges such as poor stability and limited retention at the tumour site persist, necessitating the development of advanced delivery systems to optimize the effectiveness of these NPs in clinical applications. In this study, we synthesized a benzothiadiazole-based photothermal small molecule, BPD-BBTD NPs, with a median particle size of 116 nm. And subsequently incorporated them into a chitosan (CS) and hydroxyethyl cellulose (HEC) matrix to form a novel hydrogel, BPD-BBTD NPs @CS-HEC. The photothermal efficacy of both the NPs and the hydrogel against oral squamous cell carcinoma (OSCC) was further explored. The photothermal conversion efficiency of BPD BBTD NPs small molecules can reach 40%. When the concentration is 400 μg/mL, the temperature can reach 75 °C after 3 min of NIR irradiation. The hydrogel's dense network structure was designed to effectively retain heat within its matrix, thus enhancing the photothermal effect and reducing heat dissipation. Our in vitro experiments demonstrated that BPD-BBTD NPs significantly inhibited the proliferation and migration of OSCC cells while exerting minimal cytotoxic effects on normal cells. The survival rates of mouse fibroblasts (L929) and human oral keratinocytes (Hok) were over 80%. Mechanistic investigations indicated that under near-infra-red (NIR) light irradiation, the NPs increased the production of reactive oxygen species (ROS) in OSCC cells. This ROS upregulation further led to apoptosis in OSCC cells, primarily through the reduction of mitochondrial membrane potential, a consequence of heat stress induced by NIR irradiation. Furthermore, the anti-tumour efficacy of BPD-BBTD NPs @CS-HEC hydrogel was validated using an in situ mouse model of OSCC. Furthermore, the relative change rate of tumour volume before and after treatment was reduced by 94.4%. In conclusion, our findings suggest that BPD-BBTD NPs @CS-HEC hydrogels, under the activation of NIR light, represent a promising biomaterial for the targeted treatment of OSCC, offering a synergistic approach by combining PTT with localized, sustained treatment delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信