相互作用的稀疏建模可以在生物库规模的研究中快速检测全基因组上位性。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-09-04 Epub Date: 2025-07-29 DOI:10.1016/j.ajhg.2025.07.004
Julian Stamp, Samuel Pattillo Smith, Daniel Weinreich, Lorin Crawford
{"title":"相互作用的稀疏建模可以在生物库规模的研究中快速检测全基因组上位性。","authors":"Julian Stamp, Samuel Pattillo Smith, Daniel Weinreich, Lorin Crawford","doi":"10.1016/j.ajhg.2025.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of computational methods capable of detecting epistasis in biobanks has led to uncertainty about the role of non-additive genetic effects on complex trait variation. The marginal epistasis framework is a powerful approach because it estimates the likelihood of a SNP being involved in any interaction, thereby reducing the multiple testing burden. Current implementations of this approach have failed to scale genome wide in large human studies. To address this, we present the sparse marginal epistasis (SME) test, which concentrates the scans for epistasis to regions of the genome that have known functional enrichment for a quantitative trait of interest. By leveraging the sparse nature of this modeling setup, we develop a statistical algorithm that allows SME to run 10-90 times faster than state-of-the-art epistatic mapping methods. In a study of complex traits measured in 349,411 individuals from the UK Biobank, we show that reducing searches of epistasis to variants in functionally enriched regions facilitates the identification of genetic interactions associated with regulatory genomic elements.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2198-2212"},"PeriodicalIF":8.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sparse modeling of interactions enables fast detection of genome-wide epistasis in biobank-scale studies.\",\"authors\":\"Julian Stamp, Samuel Pattillo Smith, Daniel Weinreich, Lorin Crawford\",\"doi\":\"10.1016/j.ajhg.2025.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lack of computational methods capable of detecting epistasis in biobanks has led to uncertainty about the role of non-additive genetic effects on complex trait variation. The marginal epistasis framework is a powerful approach because it estimates the likelihood of a SNP being involved in any interaction, thereby reducing the multiple testing burden. Current implementations of this approach have failed to scale genome wide in large human studies. To address this, we present the sparse marginal epistasis (SME) test, which concentrates the scans for epistasis to regions of the genome that have known functional enrichment for a quantitative trait of interest. By leveraging the sparse nature of this modeling setup, we develop a statistical algorithm that allows SME to run 10-90 times faster than state-of-the-art epistatic mapping methods. In a study of complex traits measured in 349,411 individuals from the UK Biobank, we show that reducing searches of epistasis to variants in functionally enriched regions facilitates the identification of genetic interactions associated with regulatory genomic elements.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"2198-2212\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.07.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.07.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

缺乏能够检测生物库中上位性的计算方法导致了非加性遗传效应在复杂性状变异中的作用的不确定性。边际上位框架是一种强大的方法,因为它估计了SNP参与任何相互作用的可能性,从而减少了多次测试的负担。目前这种方法的实施未能在大规模人类研究中扩大基因组范围。为了解决这个问题,我们提出了稀疏边际上位性(SME)测试,该测试将上位性扫描集中到已知功能富集的基因组区域,以获得感兴趣的数量性状。通过利用这种建模设置的稀疏特性,我们开发了一种统计算法,使SME的运行速度比最先进的上位映射方法快10-90倍。在一项对来自UK Biobank的349,411个个体的复杂性状进行的研究中,我们发现减少对功能丰富区域变异的上位性搜索有助于识别与调控基因组元件相关的遗传相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse modeling of interactions enables fast detection of genome-wide epistasis in biobank-scale studies.

The lack of computational methods capable of detecting epistasis in biobanks has led to uncertainty about the role of non-additive genetic effects on complex trait variation. The marginal epistasis framework is a powerful approach because it estimates the likelihood of a SNP being involved in any interaction, thereby reducing the multiple testing burden. Current implementations of this approach have failed to scale genome wide in large human studies. To address this, we present the sparse marginal epistasis (SME) test, which concentrates the scans for epistasis to regions of the genome that have known functional enrichment for a quantitative trait of interest. By leveraging the sparse nature of this modeling setup, we develop a statistical algorithm that allows SME to run 10-90 times faster than state-of-the-art epistatic mapping methods. In a study of complex traits measured in 349,411 individuals from the UK Biobank, we show that reducing searches of epistasis to variants in functionally enriched regions facilitates the identification of genetic interactions associated with regulatory genomic elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信