Shelby L Hemker, Ashley Marsh, Felicia Hernandez, Elena Glick, Grace Clark, Alyssa Bashir, Krystal Jiang, Jacob O Kitzman
{"title":"利用DNA修复报告基因饱和定位MUTYH变异效应。","authors":"Shelby L Hemker, Ashley Marsh, Felicia Hernandez, Elena Glick, Grace Clark, Alyssa Bashir, Krystal Jiang, Jacob O Kitzman","doi":"10.1016/j.ajhg.2025.07.005","DOIUrl":null,"url":null,"abstract":"<p><p>Variants of uncertain significance (VUSs) limit the actionability of genetic testing. A prominent example is MUTYH, a DNA repair factor underlying colorectal cancer with a pathogenic variant carrier rate of ∼1:50. To systematically interrogate MUTYH variant function, we coupled deep mutational scanning to DNA repair reporters containing its lesion substrate, 8OG:A. Our variant-to-function map covers 96.6% of possible MUTYH point variants (n = 10,941) and achieves 100% accuracy on known clinical variants (n = 247). Leveraging a large clinical registry, we observe significant associations with colorectal polyps and cancer, with more severely impaired missense variants conferring greater risk. We recapitulate functional differences between pathogenic founder alleles and highlight sites of complete missense intolerance, including residues that intercalate DNA and coordinate essential Zn<sup>2+</sup> or Fe-S clusters. This map provides a resource to resolve the >1,100 existing missense VUSs in MUTYH and demonstrates a scalable strategy to interrogate other clinically relevant DNA repair factors.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2010-2026"},"PeriodicalIF":8.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461019/pdf/","citationCount":"0","resultStr":"{\"title\":\"Saturation mapping of MUTYH variant effects using DNA repair reporters.\",\"authors\":\"Shelby L Hemker, Ashley Marsh, Felicia Hernandez, Elena Glick, Grace Clark, Alyssa Bashir, Krystal Jiang, Jacob O Kitzman\",\"doi\":\"10.1016/j.ajhg.2025.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variants of uncertain significance (VUSs) limit the actionability of genetic testing. A prominent example is MUTYH, a DNA repair factor underlying colorectal cancer with a pathogenic variant carrier rate of ∼1:50. To systematically interrogate MUTYH variant function, we coupled deep mutational scanning to DNA repair reporters containing its lesion substrate, 8OG:A. Our variant-to-function map covers 96.6% of possible MUTYH point variants (n = 10,941) and achieves 100% accuracy on known clinical variants (n = 247). Leveraging a large clinical registry, we observe significant associations with colorectal polyps and cancer, with more severely impaired missense variants conferring greater risk. We recapitulate functional differences between pathogenic founder alleles and highlight sites of complete missense intolerance, including residues that intercalate DNA and coordinate essential Zn<sup>2+</sup> or Fe-S clusters. This map provides a resource to resolve the >1,100 existing missense VUSs in MUTYH and demonstrates a scalable strategy to interrogate other clinically relevant DNA repair factors.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"2010-2026\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.07.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.07.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Saturation mapping of MUTYH variant effects using DNA repair reporters.
Variants of uncertain significance (VUSs) limit the actionability of genetic testing. A prominent example is MUTYH, a DNA repair factor underlying colorectal cancer with a pathogenic variant carrier rate of ∼1:50. To systematically interrogate MUTYH variant function, we coupled deep mutational scanning to DNA repair reporters containing its lesion substrate, 8OG:A. Our variant-to-function map covers 96.6% of possible MUTYH point variants (n = 10,941) and achieves 100% accuracy on known clinical variants (n = 247). Leveraging a large clinical registry, we observe significant associations with colorectal polyps and cancer, with more severely impaired missense variants conferring greater risk. We recapitulate functional differences between pathogenic founder alleles and highlight sites of complete missense intolerance, including residues that intercalate DNA and coordinate essential Zn2+ or Fe-S clusters. This map provides a resource to resolve the >1,100 existing missense VUSs in MUTYH and demonstrates a scalable strategy to interrogate other clinically relevant DNA repair factors.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.