在Ti6Al4V合金上创新等离子喷涂HA-Ti-MgO复合材料,以提高性能。

IF 4.5 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Negin Nadian, Salman Nourouzi, Hamed Jamshidi Aval
{"title":"在Ti6Al4V合金上创新等离子喷涂HA-Ti-MgO复合材料,以提高性能。","authors":"Negin Nadian,&nbsp;Salman Nourouzi,&nbsp;Hamed Jamshidi Aval","doi":"10.1007/s10856-025-06920-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an innovative hydroxyapatite–titanium–magnesium oxide composite coating was successfully fabricated on Ti<sub>6</sub>Al<sub>4</sub>V alloy using plasma spraying to enhance its mechanical and corrosion performance for biomedical applications. Granulation of nano-sized HA powder (~100 ± 20 nm) produced spherical agglomerates in the range of 5–20 µm, ensuring suitable flowability for uniform coating deposition. SEM analyses confirmed dense and crack-minimized layers for both pure HA (~105 µm thick) and composite (~98 µm thick) coatings. XRD revealed the formation of additional CaTiO<sub>3</sub> and MgO phases in the composite, strengthening interfacial bonding. The composite coating exhibited a significant improvement in adhesion strength, reaching 29.2 ± 3.4 MPa, compared to 6.9 ± 0.6 MPa for pure HA. Vickers hardness also increased from 431.3 ± 5.8 HV (HA) to 537.9 ± 1.9 HV (composite coating), outperforming the uncoated Ti<sub>6</sub>Al<sub>4</sub>V substrate (360.8 ± 1.7 HV). Electrochemical tests showed that the composite coating achieved a lower corrosion current density (9.72 × 10<sup>−8</sup> A/cm<sup>2</sup>) and higher polarization resistance (41.2 kΩ·cm<sup>2</sup>) than the HA-only coating (1.19 × 10<sup>−6</sup> A/cm<sup>2</sup>, 28.9 kΩ·cm<sup>2</sup>), indicating enhanced corrosion resistance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313778/pdf/","citationCount":"0","resultStr":"{\"title\":\"Innovative plasma spray coating of HA-Ti-MgO composite on Ti6Al4V alloy for enhanced performance\",\"authors\":\"Negin Nadian,&nbsp;Salman Nourouzi,&nbsp;Hamed Jamshidi Aval\",\"doi\":\"10.1007/s10856-025-06920-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, an innovative hydroxyapatite–titanium–magnesium oxide composite coating was successfully fabricated on Ti<sub>6</sub>Al<sub>4</sub>V alloy using plasma spraying to enhance its mechanical and corrosion performance for biomedical applications. Granulation of nano-sized HA powder (~100 ± 20 nm) produced spherical agglomerates in the range of 5–20 µm, ensuring suitable flowability for uniform coating deposition. SEM analyses confirmed dense and crack-minimized layers for both pure HA (~105 µm thick) and composite (~98 µm thick) coatings. XRD revealed the formation of additional CaTiO<sub>3</sub> and MgO phases in the composite, strengthening interfacial bonding. The composite coating exhibited a significant improvement in adhesion strength, reaching 29.2 ± 3.4 MPa, compared to 6.9 ± 0.6 MPa for pure HA. Vickers hardness also increased from 431.3 ± 5.8 HV (HA) to 537.9 ± 1.9 HV (composite coating), outperforming the uncoated Ti<sub>6</sub>Al<sub>4</sub>V substrate (360.8 ± 1.7 HV). Electrochemical tests showed that the composite coating achieved a lower corrosion current density (9.72 × 10<sup>−8</sup> A/cm<sup>2</sup>) and higher polarization resistance (41.2 kΩ·cm<sup>2</sup>) than the HA-only coating (1.19 × 10<sup>−6</sup> A/cm<sup>2</sup>, 28.9 kΩ·cm<sup>2</sup>), indicating enhanced corrosion resistance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313778/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-025-06920-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06920-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,利用等离子喷涂技术在Ti6Al4V合金表面成功制备了一种新型羟基磷灰石-钛-氧化镁复合涂层,以提高其机械和腐蚀性能,并应用于生物医学领域。纳米级HA粉末(~100±20 nm)的造粒产生的球形团块在5-20µm范围内,确保了合适的流动性,以均匀沉积涂层。SEM分析证实了纯HA(~105µm厚)和复合(~98µm厚)涂层的致密和裂纹最小化。XRD分析表明,复合材料中还形成了CaTiO3和MgO相,增强了界面结合。复合涂层的结合强度达到29.2±3.4 MPa,而纯HA涂层的结合强度为6.9±0.6 MPa。维氏硬度也从431.3±5.8 HV (HA)提高到537.9±1.9 HV(复合涂层),优于未涂层Ti6Al4V基体(360.8±1.7 HV)。电化学测试结果表明,复合涂层的腐蚀电流密度(9.72 × 10-8 a /cm2)低于纯ha涂层(1.19 × 10-6 a /cm2, 28.9 kΩ·cm2),极化电阻(41.2 kΩ·cm2)高于纯ha涂层(28.9 kΩ·cm2),表明复合涂层的耐蚀性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Innovative plasma spray coating of HA-Ti-MgO composite on Ti6Al4V alloy for enhanced performance

Innovative plasma spray coating of HA-Ti-MgO composite on Ti6Al4V alloy for enhanced performance

Innovative plasma spray coating of HA-Ti-MgO composite on Ti6Al4V alloy for enhanced performance

Innovative plasma spray coating of HA-Ti-MgO composite on Ti6Al4V alloy for enhanced performance

In this study, an innovative hydroxyapatite–titanium–magnesium oxide composite coating was successfully fabricated on Ti6Al4V alloy using plasma spraying to enhance its mechanical and corrosion performance for biomedical applications. Granulation of nano-sized HA powder (~100 ± 20 nm) produced spherical agglomerates in the range of 5–20 µm, ensuring suitable flowability for uniform coating deposition. SEM analyses confirmed dense and crack-minimized layers for both pure HA (~105 µm thick) and composite (~98 µm thick) coatings. XRD revealed the formation of additional CaTiO3 and MgO phases in the composite, strengthening interfacial bonding. The composite coating exhibited a significant improvement in adhesion strength, reaching 29.2 ± 3.4 MPa, compared to 6.9 ± 0.6 MPa for pure HA. Vickers hardness also increased from 431.3 ± 5.8 HV (HA) to 537.9 ± 1.9 HV (composite coating), outperforming the uncoated Ti6Al4V substrate (360.8 ± 1.7 HV). Electrochemical tests showed that the composite coating achieved a lower corrosion current density (9.72 × 10−8 A/cm2) and higher polarization resistance (41.2 kΩ·cm2) than the HA-only coating (1.19 × 10−6 A/cm2, 28.9 kΩ·cm2), indicating enhanced corrosion resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信