主动脉夹层扩散临界压力的三维计算研究。

IF 2.7 3区 医学 Q2 BIOPHYSICS
Sathish Kumar Marimuthu, Giulia Luraghi, Craig Maclean, Robbie Brodie, Francesco Migliavacca, Sean McGinty, Nicholas A Hill
{"title":"主动脉夹层扩散临界压力的三维计算研究。","authors":"Sathish Kumar Marimuthu, Giulia Luraghi, Craig Maclean, Robbie Brodie, Francesco Migliavacca, Sean McGinty, Nicholas A Hill","doi":"10.1007/s10237-025-01991-2","DOIUrl":null,"url":null,"abstract":"<p><p>Aortic dissection is a life-threatening disease with high mortality rates. The degradation of the layers of the aorta wall causes tears, which then propagate further due to high-pressure blood penetrating the vessel wall, creating a false lumen. The intimal flap separating the true and false lumen can either bulge inwards constricting the true lumen's blood flow or bulge outwards leading to catastrophic rupture and internal bleeding. Therefore, to understand the role of critical pressure on tear propagation, a computational study of the initiation and propagation of tears of various sizes and at multiple depths and locations in three-dimensional aortas was conducted. Tears were modelled using the extended finite element method, and the wall of the aortas is an anisotropic hyperelastic material. Blood-pressure-loaded aorta geometries were obtained from the corresponding unloaded geometries using an iterative procedure to match the in vivo geometries. Pressure-driven tear initiation and propagation were studied. Our results show that when the tear surface's normal is perpendicular to the blood flow, the critical pressure required to cause further propagation is higher for the shorter and deeper tears and reduces when the initial tear size increases. When the normal is parallel to the blood flow, the difference in critical pressure with an increase in tear depth is small and is more likely to propagate transversely. Also, the critical pressure decreases with an increase in the diameter of the aorta for all the tear orientations. This study concludes that tear size, depth inside the medial layer and the diameter of the aorta near the tear location are critical parameters in assessing the risk of further propagation.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-dimensional computational study of critical pressures of dissection propagation in the aorta.\",\"authors\":\"Sathish Kumar Marimuthu, Giulia Luraghi, Craig Maclean, Robbie Brodie, Francesco Migliavacca, Sean McGinty, Nicholas A Hill\",\"doi\":\"10.1007/s10237-025-01991-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aortic dissection is a life-threatening disease with high mortality rates. The degradation of the layers of the aorta wall causes tears, which then propagate further due to high-pressure blood penetrating the vessel wall, creating a false lumen. The intimal flap separating the true and false lumen can either bulge inwards constricting the true lumen's blood flow or bulge outwards leading to catastrophic rupture and internal bleeding. Therefore, to understand the role of critical pressure on tear propagation, a computational study of the initiation and propagation of tears of various sizes and at multiple depths and locations in three-dimensional aortas was conducted. Tears were modelled using the extended finite element method, and the wall of the aortas is an anisotropic hyperelastic material. Blood-pressure-loaded aorta geometries were obtained from the corresponding unloaded geometries using an iterative procedure to match the in vivo geometries. Pressure-driven tear initiation and propagation were studied. Our results show that when the tear surface's normal is perpendicular to the blood flow, the critical pressure required to cause further propagation is higher for the shorter and deeper tears and reduces when the initial tear size increases. When the normal is parallel to the blood flow, the difference in critical pressure with an increase in tear depth is small and is more likely to propagate transversely. Also, the critical pressure decreases with an increase in the diameter of the aorta for all the tear orientations. This study concludes that tear size, depth inside the medial layer and the diameter of the aorta near the tear location are critical parameters in assessing the risk of further propagation.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-025-01991-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01991-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

主动脉夹层是一种死亡率高、危及生命的疾病。主动脉壁层的退化导致撕裂,然后由于高压血液穿透血管壁而进一步传播,形成假腔。分隔真腔和假腔的内膜瓣要么向内膨胀,收缩真腔的血流,要么向外膨胀,导致灾难性的破裂和内出血。因此,为了了解临界压力对撕裂传播的作用,我们对三维主动脉中不同大小、不同深度和位置的撕裂的发生和传播进行了计算研究。采用扩展有限元法对主动脉撕裂进行建模,主动脉壁是一种各向异性超弹性材料。使用迭代程序从相应的卸载几何形状中获得血压负载的主动脉几何形状,以匹配体内几何形状。研究了压力驱动的撕裂起始和扩展过程。我们的研究结果表明,当撕裂面法线垂直于血流时,越短越深的撕裂所需要的临界压力越高,随着初始撕裂尺寸的增大而降低。当法线与血流平行时,随着撕裂深度的增加,临界压力的差异很小,更容易横向传播。此外,对于所有撕裂方向,临界压力随主动脉直径的增加而降低。本研究得出结论,撕裂大小、内侧深度和靠近撕裂位置的主动脉直径是评估进一步传播风险的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A three-dimensional computational study of critical pressures of dissection propagation in the aorta.

Aortic dissection is a life-threatening disease with high mortality rates. The degradation of the layers of the aorta wall causes tears, which then propagate further due to high-pressure blood penetrating the vessel wall, creating a false lumen. The intimal flap separating the true and false lumen can either bulge inwards constricting the true lumen's blood flow or bulge outwards leading to catastrophic rupture and internal bleeding. Therefore, to understand the role of critical pressure on tear propagation, a computational study of the initiation and propagation of tears of various sizes and at multiple depths and locations in three-dimensional aortas was conducted. Tears were modelled using the extended finite element method, and the wall of the aortas is an anisotropic hyperelastic material. Blood-pressure-loaded aorta geometries were obtained from the corresponding unloaded geometries using an iterative procedure to match the in vivo geometries. Pressure-driven tear initiation and propagation were studied. Our results show that when the tear surface's normal is perpendicular to the blood flow, the critical pressure required to cause further propagation is higher for the shorter and deeper tears and reduces when the initial tear size increases. When the normal is parallel to the blood flow, the difference in critical pressure with an increase in tear depth is small and is more likely to propagate transversely. Also, the critical pressure decreases with an increase in the diameter of the aorta for all the tear orientations. This study concludes that tear size, depth inside the medial layer and the diameter of the aorta near the tear location are critical parameters in assessing the risk of further propagation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信