Laura M Bouret, Jean-Baptiste Billeau, Michael H Weber, Derek H Rosenzweig, Stephan Reuter
{"title":"低温大气等离子体选择性地破坏生物打印3D肿瘤-基质共培养模型中的乳腺癌生长。","authors":"Laura M Bouret, Jean-Baptiste Billeau, Michael H Weber, Derek H Rosenzweig, Stephan Reuter","doi":"10.1002/adhm.202405292","DOIUrl":null,"url":null,"abstract":"<p><p>Spine metastases are the most common bone site for breast cancer, with evolving surgery and multidisciplinary care improving outcomes. Current treatments, including chemotherapy and invasive surgery, may damage healthy tissue and leave residual tumors that lead to recurrence. Cold atmospheric plasma (CAP) offers a non-invasive alternative by delivering reactive oxygen and nitrogen species (RONS) locally to tumor sites, selectively targeting cancer cells while sparing healthy tissue. To assess the impact and selectivity toward tumor cells adjacent to bone-like tissue, a 3D bioprinted tumor-stroma model is established using a 1% alginate and 7% gelatin cell-laden hydrogel to mimic a bone-like microenvironment. The model co-cultures triple-negative MDA-MB-231 human breast cancer cells with primary human bone marrow mesenchymal stromal cells to simulate tumor-stroma interactions. The effects of CAP treatments are assessed through metabolic activity and viability assays over three days. Results demonstrate significant selectivity for cancer cells in both 2D and 3D cultures. CAP minimizes damage to healthy cells, offering the potential for localized treatment over systemic chemotherapies such as doxorubicin. Scavenger experiments further confirm that CAP-induced cytotoxicity is mediated by oxidative stress, involving both extracellular and intracellular RONS. This novel bioprinted platform highlights CAP as a personalized, non-invasive treatment for bone metastases.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e05292"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cold Atmospheric Plasma Selectively Disrupts Breast Cancer Growth in a Bioprinted 3D Tumor-Stroma Co-Culture Model.\",\"authors\":\"Laura M Bouret, Jean-Baptiste Billeau, Michael H Weber, Derek H Rosenzweig, Stephan Reuter\",\"doi\":\"10.1002/adhm.202405292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spine metastases are the most common bone site for breast cancer, with evolving surgery and multidisciplinary care improving outcomes. Current treatments, including chemotherapy and invasive surgery, may damage healthy tissue and leave residual tumors that lead to recurrence. Cold atmospheric plasma (CAP) offers a non-invasive alternative by delivering reactive oxygen and nitrogen species (RONS) locally to tumor sites, selectively targeting cancer cells while sparing healthy tissue. To assess the impact and selectivity toward tumor cells adjacent to bone-like tissue, a 3D bioprinted tumor-stroma model is established using a 1% alginate and 7% gelatin cell-laden hydrogel to mimic a bone-like microenvironment. The model co-cultures triple-negative MDA-MB-231 human breast cancer cells with primary human bone marrow mesenchymal stromal cells to simulate tumor-stroma interactions. The effects of CAP treatments are assessed through metabolic activity and viability assays over three days. Results demonstrate significant selectivity for cancer cells in both 2D and 3D cultures. CAP minimizes damage to healthy cells, offering the potential for localized treatment over systemic chemotherapies such as doxorubicin. Scavenger experiments further confirm that CAP-induced cytotoxicity is mediated by oxidative stress, involving both extracellular and intracellular RONS. This novel bioprinted platform highlights CAP as a personalized, non-invasive treatment for bone metastases.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e05292\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202405292\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202405292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Cold Atmospheric Plasma Selectively Disrupts Breast Cancer Growth in a Bioprinted 3D Tumor-Stroma Co-Culture Model.
Spine metastases are the most common bone site for breast cancer, with evolving surgery and multidisciplinary care improving outcomes. Current treatments, including chemotherapy and invasive surgery, may damage healthy tissue and leave residual tumors that lead to recurrence. Cold atmospheric plasma (CAP) offers a non-invasive alternative by delivering reactive oxygen and nitrogen species (RONS) locally to tumor sites, selectively targeting cancer cells while sparing healthy tissue. To assess the impact and selectivity toward tumor cells adjacent to bone-like tissue, a 3D bioprinted tumor-stroma model is established using a 1% alginate and 7% gelatin cell-laden hydrogel to mimic a bone-like microenvironment. The model co-cultures triple-negative MDA-MB-231 human breast cancer cells with primary human bone marrow mesenchymal stromal cells to simulate tumor-stroma interactions. The effects of CAP treatments are assessed through metabolic activity and viability assays over three days. Results demonstrate significant selectivity for cancer cells in both 2D and 3D cultures. CAP minimizes damage to healthy cells, offering the potential for localized treatment over systemic chemotherapies such as doxorubicin. Scavenger experiments further confirm that CAP-induced cytotoxicity is mediated by oxidative stress, involving both extracellular and intracellular RONS. This novel bioprinted platform highlights CAP as a personalized, non-invasive treatment for bone metastases.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.