原子迟滞扩散通过簇加胶原子模型GCFMs实现了高强度TiAl/Ni接头。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liangliang Zhang, Weimin Long, Peng Li, Zhiwei Qin, Zhijie Ding, Yinchen Wang, Xin Jiang, Bomin Zhao and Honggang Dong
{"title":"原子迟滞扩散通过簇加胶原子模型GCFMs实现了高强度TiAl/Ni接头。","authors":"Liangliang Zhang, Weimin Long, Peng Li, Zhiwei Qin, Zhijie Ding, Yinchen Wang, Xin Jiang, Bomin Zhao and Honggang Dong","doi":"10.1039/D5MH01092F","DOIUrl":null,"url":null,"abstract":"<p >The development of high-performance Ni/TiAl composite structures demands innovative solutions to overcome strength–ductility synergy. This work introduces a gradient-driven atomic hysteretic diffusion strategy to achieve TiAl substrate-matching mechanical performance. By combining [Ni-Ni<small><sub>3</sub></small>Ti<small><sub>9</sub></small>]Ni<small><sub>3</sub></small> and [B-Ni<small><sub>9</sub></small>]B<small><sub>3</sub></small>Ni<small><sub>2</sub></small> cluster-plus-glue-atom modeled gradient composite filler metals (GCFMs) (Ni<small><sub>54</sub></small>Cr<small><sub>19</sub></small>B<small><sub>19</sub></small>Si<small><sub>8</sub></small>/Zr<small><sub>25</sub></small>Ti<small><sub>25</sub></small>Ta<small><sub>6.25</sub></small>Ni<small><sub>25</sub></small>Cu<small><sub>18.75</sub></small>), we established spatiotemporal control of solid–liquid interfaces at the zone I/II interface and zone III/IV interface, inducing atomic diffusion hysteresis that converted brittle Ti-based intermetallic compounds (IMCs) into gradient-distributed Ni-based solid solutions in zones II and III. The resultant architecture of TiAl/K4169 brazed seam combined dispersion strengthening <em>via</em> CrB<small><sub>4</sub></small> in zones I and II, solid solution strengthening from lattice distortion in zones II and III, and the covalent interface (Ta-mediated <em>W</em><small><sub>ad</sub></small> increased 8.23%) in zone IV. The optimized K4169/TiAl brazed joint exhibited exceptional shear strength (479 MPa, comparable to that of the TiAl substrate) through synergistic mechanisms: crack bridging <em>via</em> 95% high-angle grain boundaries (HAGBs), stress redistribution through reticulated Ni<small><sub>ss</sub></small>(Cr,Fe), Ni<small><sub>ss</sub></small>(Zr,Si) and Ni<small><sub>ss</sub></small>(Al,Ti) networks, and interfacial covalent bond reinforcement. This GCFM strategy provides a generalized framework for joining dissimilar metals, demonstrating 40% strength enhancement over conventional brazed joints while enabling damage-tolerant composite architectures for aerospace applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 20","pages":" 8504-8515"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic hysteretic diffusion enables high-strength TiAl/Ni joints via cluster-plus-glue-atom modeled GCFMs†\",\"authors\":\"Liangliang Zhang, Weimin Long, Peng Li, Zhiwei Qin, Zhijie Ding, Yinchen Wang, Xin Jiang, Bomin Zhao and Honggang Dong\",\"doi\":\"10.1039/D5MH01092F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of high-performance Ni/TiAl composite structures demands innovative solutions to overcome strength–ductility synergy. This work introduces a gradient-driven atomic hysteretic diffusion strategy to achieve TiAl substrate-matching mechanical performance. By combining [Ni-Ni<small><sub>3</sub></small>Ti<small><sub>9</sub></small>]Ni<small><sub>3</sub></small> and [B-Ni<small><sub>9</sub></small>]B<small><sub>3</sub></small>Ni<small><sub>2</sub></small> cluster-plus-glue-atom modeled gradient composite filler metals (GCFMs) (Ni<small><sub>54</sub></small>Cr<small><sub>19</sub></small>B<small><sub>19</sub></small>Si<small><sub>8</sub></small>/Zr<small><sub>25</sub></small>Ti<small><sub>25</sub></small>Ta<small><sub>6.25</sub></small>Ni<small><sub>25</sub></small>Cu<small><sub>18.75</sub></small>), we established spatiotemporal control of solid–liquid interfaces at the zone I/II interface and zone III/IV interface, inducing atomic diffusion hysteresis that converted brittle Ti-based intermetallic compounds (IMCs) into gradient-distributed Ni-based solid solutions in zones II and III. The resultant architecture of TiAl/K4169 brazed seam combined dispersion strengthening <em>via</em> CrB<small><sub>4</sub></small> in zones I and II, solid solution strengthening from lattice distortion in zones II and III, and the covalent interface (Ta-mediated <em>W</em><small><sub>ad</sub></small> increased 8.23%) in zone IV. The optimized K4169/TiAl brazed joint exhibited exceptional shear strength (479 MPa, comparable to that of the TiAl substrate) through synergistic mechanisms: crack bridging <em>via</em> 95% high-angle grain boundaries (HAGBs), stress redistribution through reticulated Ni<small><sub>ss</sub></small>(Cr,Fe), Ni<small><sub>ss</sub></small>(Zr,Si) and Ni<small><sub>ss</sub></small>(Al,Ti) networks, and interfacial covalent bond reinforcement. This GCFM strategy provides a generalized framework for joining dissimilar metals, demonstrating 40% strength enhancement over conventional brazed joints while enabling damage-tolerant composite architectures for aerospace applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 20\",\"pages\":\" 8504-8515\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh01092f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh01092f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高性能Ni/TiAl复合材料结构的发展需要创新的解决方案来克服强度-延性协同效应。本文介绍了一种梯度驱动的原子滞后扩散策略,以实现TiAl基板匹配的机械性能。通过结合[Ni-Ni3Ti9]Ni3和[B-Ni9]B3Ni2簇加胶原子模拟梯度复合填充金属(Ni54Cr19B19Si8/Zr25Ti25Ta6.25Ni25Cu18.75),我们建立了I/II区和III/IV区固液界面的时空控制,诱导原子扩散滞后,将脆性ti基金属间化合物(IMCs)转化为II区和III区梯度分布的ni基固溶体。结果表明,在I区和II区,通过CrB4进行弥散强化;在II区和III区,通过晶格畸变进行固溶强化;在IV区,通过ta介导的Wad增加了8.23%。优化后的K4169/TiAl钎焊接头通过协同机制表现出优异的抗剪强度(479 MPa,与TiAl基体相当)。裂纹通过95%的高角度晶界(HAGBs)桥接,应力通过网状的Niss(Cr,Fe)、Niss(Zr,Si)和Niss(Al,Ti)网络重新分布,界面共价键增强。这种GCFM策略为连接不同金属提供了一个通用框架,与传统钎焊连接相比,其强度提高了40%,同时为航空航天应用提供了抗损伤复合材料架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomic hysteretic diffusion enables high-strength TiAl/Ni joints via cluster-plus-glue-atom modeled GCFMs†

Atomic hysteretic diffusion enables high-strength TiAl/Ni joints via cluster-plus-glue-atom modeled GCFMs†

The development of high-performance Ni/TiAl composite structures demands innovative solutions to overcome strength–ductility synergy. This work introduces a gradient-driven atomic hysteretic diffusion strategy to achieve TiAl substrate-matching mechanical performance. By combining [Ni-Ni3Ti9]Ni3 and [B-Ni9]B3Ni2 cluster-plus-glue-atom modeled gradient composite filler metals (GCFMs) (Ni54Cr19B19Si8/Zr25Ti25Ta6.25Ni25Cu18.75), we established spatiotemporal control of solid–liquid interfaces at the zone I/II interface and zone III/IV interface, inducing atomic diffusion hysteresis that converted brittle Ti-based intermetallic compounds (IMCs) into gradient-distributed Ni-based solid solutions in zones II and III. The resultant architecture of TiAl/K4169 brazed seam combined dispersion strengthening via CrB4 in zones I and II, solid solution strengthening from lattice distortion in zones II and III, and the covalent interface (Ta-mediated Wad increased 8.23%) in zone IV. The optimized K4169/TiAl brazed joint exhibited exceptional shear strength (479 MPa, comparable to that of the TiAl substrate) through synergistic mechanisms: crack bridging via 95% high-angle grain boundaries (HAGBs), stress redistribution through reticulated Niss(Cr,Fe), Niss(Zr,Si) and Niss(Al,Ti) networks, and interfacial covalent bond reinforcement. This GCFM strategy provides a generalized framework for joining dissimilar metals, demonstrating 40% strength enhancement over conventional brazed joints while enabling damage-tolerant composite architectures for aerospace applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信