氧分压驱动下(Fe4Al3Cr)0.25TiO5晶须原位生长机理及刚玉型中熵氧化物增强力学性能

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenxue Wang, Kang Wang, Chao Ma, Wei Yang, Junpeng Jiang, Rui Zhao, Daoyang Han, Hailong Wang, Rui Zhang
{"title":"氧分压驱动下(Fe4Al3Cr)0.25TiO5晶须原位生长机理及刚玉型中熵氧化物增强力学性能","authors":"Wenxue Wang,&nbsp;Kang Wang,&nbsp;Chao Ma,&nbsp;Wei Yang,&nbsp;Junpeng Jiang,&nbsp;Rui Zhao,&nbsp;Daoyang Han,&nbsp;Hailong Wang,&nbsp;Rui Zhang","doi":"10.1002/advs.202508378","DOIUrl":null,"url":null,"abstract":"<p>Designing in situ whiskers to enhance the fracture toughness of ceramics presents challenges for structural applications. Herein, two corundum-type medium-entropy oxide ceramics (MEO-1 and MEO-2) are synthesized through solid-state reaction sintering under controlled oxygen partial pressures. MEO-1 is a single-phase corundum-type oxide (Al<sub>0.41</sub>Cr<sub>0.26</sub>Fe<sub>0.31</sub>Ti<sub>0.02</sub>)<sub>2</sub>O<sub>3</sub>, while MEO-2 incorporates (Fe<sub>4</sub>Al<sub>3</sub>Cr)<sub>0.25</sub>TiO<sub>5</sub> whiskers to reinforce (Al<sub>0.40</sub>Cr<sub>0.25</sub>Fe<sub>0.30</sub>Ti<sub>0.05</sub>)<sub>2</sub>O<sub>3</sub>. By regulating variable valence ions at different oxygen partial pressures, the whiskers achieved a maximum average length of 28.3 µm and a length-to-diameter ratio of 17.7 at 50.6 kPa, significantly enhancing the fracture toughness of the MEO-2, which possesses the optimal flexural strength, Vickers hardness, and fracture toughness of 321 ± 8 MPa, 22.4 ± 1.5 GPa, and 3.87 ± 0.12 MPa m<sup>1/2</sup>, respectively. Bravais–Friedel–Donnay–Harker law (BFDH) simulation elucidates that oxygen partial pressures can effectively regulate ionic diffusion behavior and whisker growth. First-principles calculations demonstrate that the whisker growth direction [0 4 0] aligns with the high shear modulus direction, contributing to the strengthening mechanism. This work provides new insights for designing high-performance medium/high-entropy ceramics, highlighting the critical role of oxygen partial pressure in regulating whisker growth and improving mechanical properties.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 35","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202508378","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of In Situ Growth of (Fe4Al3Cr)0.25TiO5 Whisker Driven by Oxygen Partial Pressure and Reinforced Mechanical Properties in Corundum-Type Medium-Entropy Oxides\",\"authors\":\"Wenxue Wang,&nbsp;Kang Wang,&nbsp;Chao Ma,&nbsp;Wei Yang,&nbsp;Junpeng Jiang,&nbsp;Rui Zhao,&nbsp;Daoyang Han,&nbsp;Hailong Wang,&nbsp;Rui Zhang\",\"doi\":\"10.1002/advs.202508378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Designing in situ whiskers to enhance the fracture toughness of ceramics presents challenges for structural applications. Herein, two corundum-type medium-entropy oxide ceramics (MEO-1 and MEO-2) are synthesized through solid-state reaction sintering under controlled oxygen partial pressures. MEO-1 is a single-phase corundum-type oxide (Al<sub>0.41</sub>Cr<sub>0.26</sub>Fe<sub>0.31</sub>Ti<sub>0.02</sub>)<sub>2</sub>O<sub>3</sub>, while MEO-2 incorporates (Fe<sub>4</sub>Al<sub>3</sub>Cr)<sub>0.25</sub>TiO<sub>5</sub> whiskers to reinforce (Al<sub>0.40</sub>Cr<sub>0.25</sub>Fe<sub>0.30</sub>Ti<sub>0.05</sub>)<sub>2</sub>O<sub>3</sub>. By regulating variable valence ions at different oxygen partial pressures, the whiskers achieved a maximum average length of 28.3 µm and a length-to-diameter ratio of 17.7 at 50.6 kPa, significantly enhancing the fracture toughness of the MEO-2, which possesses the optimal flexural strength, Vickers hardness, and fracture toughness of 321 ± 8 MPa, 22.4 ± 1.5 GPa, and 3.87 ± 0.12 MPa m<sup>1/2</sup>, respectively. Bravais–Friedel–Donnay–Harker law (BFDH) simulation elucidates that oxygen partial pressures can effectively regulate ionic diffusion behavior and whisker growth. First-principles calculations demonstrate that the whisker growth direction [0 4 0] aligns with the high shear modulus direction, contributing to the strengthening mechanism. This work provides new insights for designing high-performance medium/high-entropy ceramics, highlighting the critical role of oxygen partial pressure in regulating whisker growth and improving mechanical properties.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 35\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202508378\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202508378\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202508378","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计原位晶须以提高陶瓷的断裂韧性,对结构应用提出了挑战。本文在可控氧分压下,通过固相反应烧结合成了两种刚玉型中熵氧化物陶瓷(MEO-1和MEO-2)。MEO-1是一种单相刚玉型氧化物(Al0.41Cr0.26Fe0.31Ti0.02)2O3,而MEO-2则含有(Fe4Al3Cr)0.25TiO5晶须以增强(Al0.40Cr0.25Fe0.30Ti0.05)2O3。通过调节不同氧分压下的变价离子,在50.6 kPa下,晶须的最大平均长度为28.3µm,长径比为17.7,显著提高了MEO-2的断裂韧性,其最佳抗弯强度、维氏硬度和断裂韧性分别为321±8 MPa、22.4±1.5 GPa和3.87±0.12 MPa m1/2。Bravais-Friedel-Donnay-Harker定律(BFDH)模拟表明,氧分压能有效调节离子扩散行为和晶须生长。第一性原理计算表明,晶须生长方向[0 4 0]与高剪切模量方向一致,有利于强化机制。这项工作为设计高性能中/高熵陶瓷提供了新的见解,突出了氧分压在调节晶须生长和改善机械性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanisms of In Situ Growth of (Fe4Al3Cr)0.25TiO5 Whisker Driven by Oxygen Partial Pressure and Reinforced Mechanical Properties in Corundum-Type Medium-Entropy Oxides

Mechanisms of In Situ Growth of (Fe4Al3Cr)0.25TiO5 Whisker Driven by Oxygen Partial Pressure and Reinforced Mechanical Properties in Corundum-Type Medium-Entropy Oxides

Mechanisms of In Situ Growth of (Fe4Al3Cr)0.25TiO5 Whisker Driven by Oxygen Partial Pressure and Reinforced Mechanical Properties in Corundum-Type Medium-Entropy Oxides

Mechanisms of In Situ Growth of (Fe4Al3Cr)0.25TiO5 Whisker Driven by Oxygen Partial Pressure and Reinforced Mechanical Properties in Corundum-Type Medium-Entropy Oxides

Mechanisms of In Situ Growth of (Fe4Al3Cr)0.25TiO5 Whisker Driven by Oxygen Partial Pressure and Reinforced Mechanical Properties in Corundum-Type Medium-Entropy Oxides

Designing in situ whiskers to enhance the fracture toughness of ceramics presents challenges for structural applications. Herein, two corundum-type medium-entropy oxide ceramics (MEO-1 and MEO-2) are synthesized through solid-state reaction sintering under controlled oxygen partial pressures. MEO-1 is a single-phase corundum-type oxide (Al0.41Cr0.26Fe0.31Ti0.02)2O3, while MEO-2 incorporates (Fe4Al3Cr)0.25TiO5 whiskers to reinforce (Al0.40Cr0.25Fe0.30Ti0.05)2O3. By regulating variable valence ions at different oxygen partial pressures, the whiskers achieved a maximum average length of 28.3 µm and a length-to-diameter ratio of 17.7 at 50.6 kPa, significantly enhancing the fracture toughness of the MEO-2, which possesses the optimal flexural strength, Vickers hardness, and fracture toughness of 321 ± 8 MPa, 22.4 ± 1.5 GPa, and 3.87 ± 0.12 MPa m1/2, respectively. Bravais–Friedel–Donnay–Harker law (BFDH) simulation elucidates that oxygen partial pressures can effectively regulate ionic diffusion behavior and whisker growth. First-principles calculations demonstrate that the whisker growth direction [0 4 0] aligns with the high shear modulus direction, contributing to the strengthening mechanism. This work provides new insights for designing high-performance medium/high-entropy ceramics, highlighting the critical role of oxygen partial pressure in regulating whisker growth and improving mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信