层状Au/WO3反蛋白石光子晶体微芯片中热电子动力学和肖特基势垒调制的操作分析

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuxin Zhao*, Wei Wang, Jiafeng Geng*, Bing Luo*, Juan Wang and Weibo Hua*, 
{"title":"层状Au/WO3反蛋白石光子晶体微芯片中热电子动力学和肖特基势垒调制的操作分析","authors":"Yuxin Zhao*,&nbsp;Wei Wang,&nbsp;Jiafeng Geng*,&nbsp;Bing Luo*,&nbsp;Juan Wang and Weibo Hua*,&nbsp;","doi":"10.1021/acs.nanolett.5c03015","DOIUrl":null,"url":null,"abstract":"<p >Au nanoparticle-modified WO<sub>3</sub> inverse opal photonic crystals (Au/WO<sub>3</sub> IOPCs) exhibit exceptional NO<sub>2</sub> sensing via synergistic hierarchical porosity, Au catalytic activity, and plasmonic hot electrons. A pioneering multimodal environmental operando microspectroscopy platform integrates photoconductive AFM, Kelvin probe microscopy, and <i>in situ</i> DRIFTS with computational modeling. This approach achieves atomic-scale spatiotemporal resolution of interfacial dynamics, directly revealing: (i) plasmonically generated hot electrons fluxing across the Au/WO<sub>3</sub> interface to activate NO<sub>2</sub> adsorption and modulate electron depletion layers under illumination and (ii) dynamic Schottky barrier reconfiguration at electrode junctions that quantitatively correlates environmental stimuli (gas concentration, photon flux, temperature) with resistance evolution. By bridging nanoscale charge transfer to device-level responses, the study establishes a transformative methodology for plasmon-enhanced photonic sensors while providing fundamental insights into interfacial processes, enabling knowledge-driven development of high-precision detectors with ultimate sensitivity and selectivity.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 32","pages":"12369–12378"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operando Analysis of Hot Electron Dynamics and Schottky Barrier Modulation in Hierarchical Au/WO3 Inverse Opal Photonic Crystal Micro-Chip for Enhanced Gas Sensing\",\"authors\":\"Yuxin Zhao*,&nbsp;Wei Wang,&nbsp;Jiafeng Geng*,&nbsp;Bing Luo*,&nbsp;Juan Wang and Weibo Hua*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Au nanoparticle-modified WO<sub>3</sub> inverse opal photonic crystals (Au/WO<sub>3</sub> IOPCs) exhibit exceptional NO<sub>2</sub> sensing via synergistic hierarchical porosity, Au catalytic activity, and plasmonic hot electrons. A pioneering multimodal environmental operando microspectroscopy platform integrates photoconductive AFM, Kelvin probe microscopy, and <i>in situ</i> DRIFTS with computational modeling. This approach achieves atomic-scale spatiotemporal resolution of interfacial dynamics, directly revealing: (i) plasmonically generated hot electrons fluxing across the Au/WO<sub>3</sub> interface to activate NO<sub>2</sub> adsorption and modulate electron depletion layers under illumination and (ii) dynamic Schottky barrier reconfiguration at electrode junctions that quantitatively correlates environmental stimuli (gas concentration, photon flux, temperature) with resistance evolution. By bridging nanoscale charge transfer to device-level responses, the study establishes a transformative methodology for plasmon-enhanced photonic sensors while providing fundamental insights into interfacial processes, enabling knowledge-driven development of high-precision detectors with ultimate sensitivity and selectivity.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 32\",\"pages\":\"12369–12378\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03015\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Au纳米粒子修饰的WO3逆蛋白石光子晶体(Au/WO3 IOPCs)通过协同分层孔隙度、Au催化活性和等离子体热电子表现出卓越的NO2传感能力。一个开创性的多模态环境操作微光谱平台集成了光导AFM,开尔文探针显微镜和原位漂移与计算建模。该方法实现了界面动力学的原子尺度时空分辨率,直接揭示:(i)等离子体产生的热电子在Au/WO3界面上流动,激活NO2吸附并在照明下调节电子耗尽层;(ii)电极结处的动态肖特基势垒重构,定量地将环境刺激(气体浓度、光子通量、温度)与电阻演变联系起来。通过将纳米级电荷转移连接到器件级响应,该研究为等离子体增强光子传感器建立了一种变革方法,同时提供了对界面过程的基本见解,使知识驱动的高精度探测器的开发具有最终的灵敏度和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Operando Analysis of Hot Electron Dynamics and Schottky Barrier Modulation in Hierarchical Au/WO3 Inverse Opal Photonic Crystal Micro-Chip for Enhanced Gas Sensing

Operando Analysis of Hot Electron Dynamics and Schottky Barrier Modulation in Hierarchical Au/WO3 Inverse Opal Photonic Crystal Micro-Chip for Enhanced Gas Sensing

Au nanoparticle-modified WO3 inverse opal photonic crystals (Au/WO3 IOPCs) exhibit exceptional NO2 sensing via synergistic hierarchical porosity, Au catalytic activity, and plasmonic hot electrons. A pioneering multimodal environmental operando microspectroscopy platform integrates photoconductive AFM, Kelvin probe microscopy, and in situ DRIFTS with computational modeling. This approach achieves atomic-scale spatiotemporal resolution of interfacial dynamics, directly revealing: (i) plasmonically generated hot electrons fluxing across the Au/WO3 interface to activate NO2 adsorption and modulate electron depletion layers under illumination and (ii) dynamic Schottky barrier reconfiguration at electrode junctions that quantitatively correlates environmental stimuli (gas concentration, photon flux, temperature) with resistance evolution. By bridging nanoscale charge transfer to device-level responses, the study establishes a transformative methodology for plasmon-enhanced photonic sensors while providing fundamental insights into interfacial processes, enabling knowledge-driven development of high-precision detectors with ultimate sensitivity and selectivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信