内源性和外源性双门控DNA纳米驱动器在体外和体内两步催化扩增中的鲁棒生物分子传感。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qing Tang, Zhuo Chen, Lejing Yao, Jingwei Qiu, Hongwu Tang and Cheng-Yu Li*, 
{"title":"内源性和外源性双门控DNA纳米驱动器在体外和体内两步催化扩增中的鲁棒生物分子传感。","authors":"Qing Tang,&nbsp;Zhuo Chen,&nbsp;Lejing Yao,&nbsp;Jingwei Qiu,&nbsp;Hongwu Tang and Cheng-Yu Li*,&nbsp;","doi":"10.1021/acsami.5c07929","DOIUrl":null,"url":null,"abstract":"<p >Although DNA nanoactuator-based biosensors have promising applications for fluorescence imaging of disease-related biomolecules in living biosamples, challenges persist regarding sensing sensitivity, initiation selectivity, and detection accuracy. Herein, we present an endogenous and exogenous dual-gated DNA nanoactuator for autonomous two-step catalytic amplification. This amplification course combines an upstream self-sustaining Mn<sup>2+</sup>-reliant DNAzyme (achieved using glutathione to reduce manganese dioxide nanoflakes) with downstream entropy-driven catalysis. Subsequently, endogenous TK1 mRNA, which is abundant in various cancerous cells, serves as one gate to selectively initiate the sensing route. Additionally, 365 nm ultraviolet upconversion luminescence transformed by exogenous 808 nm near-infrared light is used to power another gate, with one sensing module incorporating a photocleavage connector. As a conceptual study, the DNA nanoactuator demonstrated exceptional sensitivity and specificity in sensing a model biomolecule (microRNA-21, an overexpressed biomarker associated with multiple cancers). This analytical methodology enables robust biomolecular sensing of this low-abundance analyte, both <i>in vitro</i> and <i>in vivo</i>, advancing the diagnostic utility of DNA nanoactuators.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 32","pages":"46310–46319"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endogenous and Exogenous Dual-Gated DNA Nanoactuator in Autonomous Two-Step Catalytic Amplification for Robust Biomolecular Sensing In Vitro and In Vivo\",\"authors\":\"Qing Tang,&nbsp;Zhuo Chen,&nbsp;Lejing Yao,&nbsp;Jingwei Qiu,&nbsp;Hongwu Tang and Cheng-Yu Li*,&nbsp;\",\"doi\":\"10.1021/acsami.5c07929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Although DNA nanoactuator-based biosensors have promising applications for fluorescence imaging of disease-related biomolecules in living biosamples, challenges persist regarding sensing sensitivity, initiation selectivity, and detection accuracy. Herein, we present an endogenous and exogenous dual-gated DNA nanoactuator for autonomous two-step catalytic amplification. This amplification course combines an upstream self-sustaining Mn<sup>2+</sup>-reliant DNAzyme (achieved using glutathione to reduce manganese dioxide nanoflakes) with downstream entropy-driven catalysis. Subsequently, endogenous TK1 mRNA, which is abundant in various cancerous cells, serves as one gate to selectively initiate the sensing route. Additionally, 365 nm ultraviolet upconversion luminescence transformed by exogenous 808 nm near-infrared light is used to power another gate, with one sensing module incorporating a photocleavage connector. As a conceptual study, the DNA nanoactuator demonstrated exceptional sensitivity and specificity in sensing a model biomolecule (microRNA-21, an overexpressed biomarker associated with multiple cancers). This analytical methodology enables robust biomolecular sensing of this low-abundance analyte, both <i>in vitro</i> and <i>in vivo</i>, advancing the diagnostic utility of DNA nanoactuators.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 32\",\"pages\":\"46310–46319\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c07929\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c07929","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管基于DNA纳米致动器的生物传感器在活体生物样品中疾病相关生物分子的荧光成像方面有很好的应用前景,但在传感灵敏度、起始选择性和检测准确性方面仍然存在挑战。在此,我们提出了一种内源性和外源性双门控DNA纳米致动器,用于自主两步催化扩增。这个扩增过程结合了上游自我维持的依赖于Mn2+的DNAzyme(使用谷胱甘肽来减少二氧化锰纳米片)和下游熵驱动的催化。随后,各种癌细胞中丰富的内源性TK1 mRNA作为选择性启动感应途径的一个门。此外,通过外源808 nm近红外光转换的365 nm紫外上转换发光用于为另一个门供电,其中一个传感模块包含光解理连接器。作为一项概念性研究,DNA纳米致动器在感知模型生物分子(microRNA-21,一种与多种癌症相关的过表达生物标志物)方面表现出了卓越的敏感性和特异性。这种分析方法能够在体外和体内对这种低丰度分析物进行强大的生物分子传感,从而推进了DNA纳米致动器的诊断效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Endogenous and Exogenous Dual-Gated DNA Nanoactuator in Autonomous Two-Step Catalytic Amplification for Robust Biomolecular Sensing In Vitro and In Vivo

Endogenous and Exogenous Dual-Gated DNA Nanoactuator in Autonomous Two-Step Catalytic Amplification for Robust Biomolecular Sensing In Vitro and In Vivo

Although DNA nanoactuator-based biosensors have promising applications for fluorescence imaging of disease-related biomolecules in living biosamples, challenges persist regarding sensing sensitivity, initiation selectivity, and detection accuracy. Herein, we present an endogenous and exogenous dual-gated DNA nanoactuator for autonomous two-step catalytic amplification. This amplification course combines an upstream self-sustaining Mn2+-reliant DNAzyme (achieved using glutathione to reduce manganese dioxide nanoflakes) with downstream entropy-driven catalysis. Subsequently, endogenous TK1 mRNA, which is abundant in various cancerous cells, serves as one gate to selectively initiate the sensing route. Additionally, 365 nm ultraviolet upconversion luminescence transformed by exogenous 808 nm near-infrared light is used to power another gate, with one sensing module incorporating a photocleavage connector. As a conceptual study, the DNA nanoactuator demonstrated exceptional sensitivity and specificity in sensing a model biomolecule (microRNA-21, an overexpressed biomarker associated with multiple cancers). This analytical methodology enables robust biomolecular sensing of this low-abundance analyte, both in vitro and in vivo, advancing the diagnostic utility of DNA nanoactuators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信