{"title":"基于原型网络的永磁电机混合故障少采样学习诊断","authors":"Kai-Jung Shih, Duc-Kien Ngo, Shih-Feng Huang, Min-Fu Hsieh","doi":"10.1049/elp2.70081","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an AI-driven few-shot learning approach for fault diagnosis in permanent magnet synchronous motors (PMSMs), utilising a prototypical network to accurately differentiate among healthy conditions, single-fault states (ITSCF or LDMF) and mixed-fault scenarios (i.e., when the two types of faults occur simultaneously) with limited training data. Addressing these concurrent faults is particularly significant due to the potential interactions between their underlying mechanisms (e.g., high current spikes from an ITSCF causing possible magnet demagnetisation) and the increased complexity of their combined diagnostic signatures, posing significant challenges to accurate diagnosis. The study first simulates and analyses motor stator current characteristics, identifying them as key diagnostic signals for both fault types. Experimental validation measures stator current from both healthy and faulty motors. Through training with a minimal amount of data, the proposed model using a prototypical network achieves over 98% accuracy in diagnosing mixed faults (i.e., ITSCF, LDMF or a combination of both), significantly outperforming convolutional neural network (CNN)-based methods (80%). Furthermore, demonstrating a key advancement for few-shot learning in this domain, when trained on only a few labelled fault patterns, the model correctly classifies unseen faults with 81% accuracy, compared to CNN's 70%, demonstrating strong generalisation and scalability for real-world applications.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70081","citationCount":"0","resultStr":"{\"title\":\"Mixed-Fault Diagnosis for Permanent Magnet Motor With Few-Shot Learning Based on the Prototypical Network\",\"authors\":\"Kai-Jung Shih, Duc-Kien Ngo, Shih-Feng Huang, Min-Fu Hsieh\",\"doi\":\"10.1049/elp2.70081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes an AI-driven few-shot learning approach for fault diagnosis in permanent magnet synchronous motors (PMSMs), utilising a prototypical network to accurately differentiate among healthy conditions, single-fault states (ITSCF or LDMF) and mixed-fault scenarios (i.e., when the two types of faults occur simultaneously) with limited training data. Addressing these concurrent faults is particularly significant due to the potential interactions between their underlying mechanisms (e.g., high current spikes from an ITSCF causing possible magnet demagnetisation) and the increased complexity of their combined diagnostic signatures, posing significant challenges to accurate diagnosis. The study first simulates and analyses motor stator current characteristics, identifying them as key diagnostic signals for both fault types. Experimental validation measures stator current from both healthy and faulty motors. Through training with a minimal amount of data, the proposed model using a prototypical network achieves over 98% accuracy in diagnosing mixed faults (i.e., ITSCF, LDMF or a combination of both), significantly outperforming convolutional neural network (CNN)-based methods (80%). Furthermore, demonstrating a key advancement for few-shot learning in this domain, when trained on only a few labelled fault patterns, the model correctly classifies unseen faults with 81% accuracy, compared to CNN's 70%, demonstrating strong generalisation and scalability for real-world applications.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70081\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70081","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mixed-Fault Diagnosis for Permanent Magnet Motor With Few-Shot Learning Based on the Prototypical Network
This paper proposes an AI-driven few-shot learning approach for fault diagnosis in permanent magnet synchronous motors (PMSMs), utilising a prototypical network to accurately differentiate among healthy conditions, single-fault states (ITSCF or LDMF) and mixed-fault scenarios (i.e., when the two types of faults occur simultaneously) with limited training data. Addressing these concurrent faults is particularly significant due to the potential interactions between their underlying mechanisms (e.g., high current spikes from an ITSCF causing possible magnet demagnetisation) and the increased complexity of their combined diagnostic signatures, posing significant challenges to accurate diagnosis. The study first simulates and analyses motor stator current characteristics, identifying them as key diagnostic signals for both fault types. Experimental validation measures stator current from both healthy and faulty motors. Through training with a minimal amount of data, the proposed model using a prototypical network achieves over 98% accuracy in diagnosing mixed faults (i.e., ITSCF, LDMF or a combination of both), significantly outperforming convolutional neural network (CNN)-based methods (80%). Furthermore, demonstrating a key advancement for few-shot learning in this domain, when trained on only a few labelled fault patterns, the model correctly classifies unseen faults with 81% accuracy, compared to CNN's 70%, demonstrating strong generalisation and scalability for real-world applications.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf