森林和植被燃料热氧化分解过程中烟雾气体的综合实验室研究

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kira Piechnik, Lukas Heydick, Anja Hofmann, Andrea Klippel
{"title":"森林和植被燃料热氧化分解过程中烟雾气体的综合实验室研究","authors":"Kira Piechnik,&nbsp;Lukas Heydick,&nbsp;Anja Hofmann,&nbsp;Andrea Klippel","doi":"10.1002/fam.3253","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the composition of smoke gases in forest and vegetation samples to draw conclusions about the actual smoke gas composition during wildfires. The focus is particularly on regions with extensive pine forests, like in Eastern Germany. The relevance of smoke gases is well illustrated by the example of wildfires in Québec, influencing air quality in New York, in 2023. By employing a modified DIN tube furnace, a bench-scale test set-up, the research emphasizes the examination of smoke composition from tree species and ground cover, prioritizing gases while disregarding particles. Key smoke gases are identified as CO, CO<sub>2</sub>, SO<sub>2</sub>, HCN, C<sub>3</sub>H<sub>4</sub>O (acrolein) and CH<sub>2</sub>O (formaldehyde) and their concentrations are compared with Acute Exposure Guideline Levels (AEGL) limits. Acknowledging the limitations of AEGL usage and the problem with direct quantitative comparison of toxicant concentrations (cf. ISO 29903-1:2020), the study highlights variations in smoke composition across different samples. The results of the studies reveal a significant disparity in CO concentration between dry and fresh pine needles. Frequently, the AEGLs of key gases are exceeded significantly. The elemental analysis of the barks indicates distinct differences in composition, reflecting in the concentrations of smoke gases. The ratio of 1 mole of substance turnover to the identified key components will be used to determine input parameters for the subsequent numerical simulation.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"599-610"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3253","citationCount":"0","resultStr":"{\"title\":\"Comprehensive laboratory study on smoke gases during the thermal oxidative decomposition of forest and vegetation fuels\",\"authors\":\"Kira Piechnik,&nbsp;Lukas Heydick,&nbsp;Anja Hofmann,&nbsp;Andrea Klippel\",\"doi\":\"10.1002/fam.3253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the composition of smoke gases in forest and vegetation samples to draw conclusions about the actual smoke gas composition during wildfires. The focus is particularly on regions with extensive pine forests, like in Eastern Germany. The relevance of smoke gases is well illustrated by the example of wildfires in Québec, influencing air quality in New York, in 2023. By employing a modified DIN tube furnace, a bench-scale test set-up, the research emphasizes the examination of smoke composition from tree species and ground cover, prioritizing gases while disregarding particles. Key smoke gases are identified as CO, CO<sub>2</sub>, SO<sub>2</sub>, HCN, C<sub>3</sub>H<sub>4</sub>O (acrolein) and CH<sub>2</sub>O (formaldehyde) and their concentrations are compared with Acute Exposure Guideline Levels (AEGL) limits. Acknowledging the limitations of AEGL usage and the problem with direct quantitative comparison of toxicant concentrations (cf. ISO 29903-1:2020), the study highlights variations in smoke composition across different samples. The results of the studies reveal a significant disparity in CO concentration between dry and fresh pine needles. Frequently, the AEGLs of key gases are exceeded significantly. The elemental analysis of the barks indicates distinct differences in composition, reflecting in the concentrations of smoke gases. The ratio of 1 mole of substance turnover to the identified key components will be used to determine input parameters for the subsequent numerical simulation.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"49 5\",\"pages\":\"599-610\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3253\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3253\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3253","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过对森林和植被样品中烟雾气体的组成进行调查,得出火灾中实际烟雾气体组成的结论。重点特别放在拥有大片松林的地区,如东德。2023年发生在quemail的野火影响了纽约的空气质量,很好地说明了烟雾的相关性。通过使用一个改进的DIN管炉,一个实验规模的测试装置,研究强调检查来自树木和地面覆盖的烟雾成分,优先考虑气体,而忽略颗粒。确定了主要烟雾气体为CO、CO2、SO2、HCN、c3h40(丙烯醛)和CH2O(甲醛),并将其浓度与急性暴露指南水平(AEGL)限值进行了比较。承认AEGL使用的局限性和直接定量比较有毒物质浓度的问题(参见ISO 29903-1:2020),该研究强调了不同样品中烟雾成分的变化。研究结果表明,干松针和新鲜松针的CO浓度存在显著差异。关键气体的egls经常被显著超过。树皮的元素分析表明,在组成上有明显的差异,反映在烟雾气体的浓度上。1mol物质周转量与确定的关键组分的比值将用于确定后续数值模拟的输入参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comprehensive laboratory study on smoke gases during the thermal oxidative decomposition of forest and vegetation fuels

Comprehensive laboratory study on smoke gases during the thermal oxidative decomposition of forest and vegetation fuels

This study investigates the composition of smoke gases in forest and vegetation samples to draw conclusions about the actual smoke gas composition during wildfires. The focus is particularly on regions with extensive pine forests, like in Eastern Germany. The relevance of smoke gases is well illustrated by the example of wildfires in Québec, influencing air quality in New York, in 2023. By employing a modified DIN tube furnace, a bench-scale test set-up, the research emphasizes the examination of smoke composition from tree species and ground cover, prioritizing gases while disregarding particles. Key smoke gases are identified as CO, CO2, SO2, HCN, C3H4O (acrolein) and CH2O (formaldehyde) and their concentrations are compared with Acute Exposure Guideline Levels (AEGL) limits. Acknowledging the limitations of AEGL usage and the problem with direct quantitative comparison of toxicant concentrations (cf. ISO 29903-1:2020), the study highlights variations in smoke composition across different samples. The results of the studies reveal a significant disparity in CO concentration between dry and fresh pine needles. Frequently, the AEGLs of key gases are exceeded significantly. The elemental analysis of the barks indicates distinct differences in composition, reflecting in the concentrations of smoke gases. The ratio of 1 mole of substance turnover to the identified key components will be used to determine input parameters for the subsequent numerical simulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信