{"title":"典型燃料在荒地-城市界面中的热粒子点火及随后的燃烧行为","authors":"Kaifeng Wang, Supan Wang, Xinyan Huang","doi":"10.1002/fam.3276","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The hot-particle ignition is a common cause of wildland and building fires. This study investigates the ignition of three typical fuels (straw, pine needles, and cotton) in the wildland-urban interface (WUI) by a hot metal particle of different temperatures and void ratios. In the absence of wind, the ignition of cotton is the easiest, where a flame occurs directly without clear smoldering. As the particle becomes hollow, the required minimum particle temperature for igniting cotton becomes smaller, because of a longer contact time between particle and fuel surface. Once ignited, the flaming of cotton is the weakest, with a mass loss of less than 25% because of an intensive charring. The burning of straw and pine needles is intense, with a large flame height and very little residue. Materials with finer and thinner structure like cotton are easy to initiate a flame by a hot particle while hard to sustain smoldering ignition. The hollow-structure or large-porosity materials like straw are prone to smoldering ignition under a weaker spot heating source. The fast-cooling void particles cannot induce a smoldering ignition of all three WUI fuels, because smoldering ignition requires a longer effective heating duration. This study helps understand the ignition propensity of WUI fuels by a hot particle and the subsequent flame-spread and burning process, which supports the fire protection design for WUI communities.</p>\n </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"698-707"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot-Particle Ignition of Typical Fuels in the Wildland-Urban Interface and Subsequent Fire Behaviors\",\"authors\":\"Kaifeng Wang, Supan Wang, Xinyan Huang\",\"doi\":\"10.1002/fam.3276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The hot-particle ignition is a common cause of wildland and building fires. This study investigates the ignition of three typical fuels (straw, pine needles, and cotton) in the wildland-urban interface (WUI) by a hot metal particle of different temperatures and void ratios. In the absence of wind, the ignition of cotton is the easiest, where a flame occurs directly without clear smoldering. As the particle becomes hollow, the required minimum particle temperature for igniting cotton becomes smaller, because of a longer contact time between particle and fuel surface. Once ignited, the flaming of cotton is the weakest, with a mass loss of less than 25% because of an intensive charring. The burning of straw and pine needles is intense, with a large flame height and very little residue. Materials with finer and thinner structure like cotton are easy to initiate a flame by a hot particle while hard to sustain smoldering ignition. The hollow-structure or large-porosity materials like straw are prone to smoldering ignition under a weaker spot heating source. The fast-cooling void particles cannot induce a smoldering ignition of all three WUI fuels, because smoldering ignition requires a longer effective heating duration. This study helps understand the ignition propensity of WUI fuels by a hot particle and the subsequent flame-spread and burning process, which supports the fire protection design for WUI communities.</p>\\n </div>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"49 5\",\"pages\":\"698-707\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3276\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3276","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hot-Particle Ignition of Typical Fuels in the Wildland-Urban Interface and Subsequent Fire Behaviors
The hot-particle ignition is a common cause of wildland and building fires. This study investigates the ignition of three typical fuels (straw, pine needles, and cotton) in the wildland-urban interface (WUI) by a hot metal particle of different temperatures and void ratios. In the absence of wind, the ignition of cotton is the easiest, where a flame occurs directly without clear smoldering. As the particle becomes hollow, the required minimum particle temperature for igniting cotton becomes smaller, because of a longer contact time between particle and fuel surface. Once ignited, the flaming of cotton is the weakest, with a mass loss of less than 25% because of an intensive charring. The burning of straw and pine needles is intense, with a large flame height and very little residue. Materials with finer and thinner structure like cotton are easy to initiate a flame by a hot particle while hard to sustain smoldering ignition. The hollow-structure or large-porosity materials like straw are prone to smoldering ignition under a weaker spot heating source. The fast-cooling void particles cannot induce a smoldering ignition of all three WUI fuels, because smoldering ignition requires a longer effective heating duration. This study helps understand the ignition propensity of WUI fuels by a hot particle and the subsequent flame-spread and burning process, which supports the fire protection design for WUI communities.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.