{"title":"燃料结构和种类对草地燃料点火的影响:来自台架实验和热重分析的见解","authors":"Shusmita Saha, Jeanette Cobian-Iñiguez","doi":"10.1002/fam.3281","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Grassy vegetation represents a significant fuel source in multiple fire-prone regions around the globe. These fuels are a major component of surface fuel beds and are therefore typically the first layer of the wildland fuel strata that ignites. Thus, understanding the drivers of successful grassy fuel ignition is key to developing a comprehensive description of the process leading to fire spread. In the wildland-urban interface, hot metal particles produced by powerline failures or mechanical equipment operations are a leading ignition source for these types of fuels. The goal of this study is to develop improved understanding of the role of fuel species and physical characteristics on the ignition behavior of grass fuels when exposed to hot metal particles. Three common California invasive grass species were studied in their natural configuration as well as in configurations in which fuel particles have been shredded or made into a powder. Overall, it was observed that the ignition temperature was lower in fuels in their powder form than fuels in a shredded or natural form. Furthermore, the findings here align with prior works, indicating that the presence of chemical compounds such as lignin and proteins may hinder ignition. Consequently, wheatgrass fuels, which have higher lignin and protein content, consistently required higher temperatures to ignite (460°C) compared to Avena (370°C), Bromus (348°C), and excelsior fuels (350°C), which contain these compounds in lower concentrations.</p>\n </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"623-641"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Fuel Structure and Species on Grassy Fuel Ignition: Insights From Bench Scale Experiments and Thermogravimetric Analysis\",\"authors\":\"Shusmita Saha, Jeanette Cobian-Iñiguez\",\"doi\":\"10.1002/fam.3281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Grassy vegetation represents a significant fuel source in multiple fire-prone regions around the globe. These fuels are a major component of surface fuel beds and are therefore typically the first layer of the wildland fuel strata that ignites. Thus, understanding the drivers of successful grassy fuel ignition is key to developing a comprehensive description of the process leading to fire spread. In the wildland-urban interface, hot metal particles produced by powerline failures or mechanical equipment operations are a leading ignition source for these types of fuels. The goal of this study is to develop improved understanding of the role of fuel species and physical characteristics on the ignition behavior of grass fuels when exposed to hot metal particles. Three common California invasive grass species were studied in their natural configuration as well as in configurations in which fuel particles have been shredded or made into a powder. Overall, it was observed that the ignition temperature was lower in fuels in their powder form than fuels in a shredded or natural form. Furthermore, the findings here align with prior works, indicating that the presence of chemical compounds such as lignin and proteins may hinder ignition. Consequently, wheatgrass fuels, which have higher lignin and protein content, consistently required higher temperatures to ignite (460°C) compared to Avena (370°C), Bromus (348°C), and excelsior fuels (350°C), which contain these compounds in lower concentrations.</p>\\n </div>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"49 5\",\"pages\":\"623-641\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3281\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3281","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Fuel Structure and Species on Grassy Fuel Ignition: Insights From Bench Scale Experiments and Thermogravimetric Analysis
Grassy vegetation represents a significant fuel source in multiple fire-prone regions around the globe. These fuels are a major component of surface fuel beds and are therefore typically the first layer of the wildland fuel strata that ignites. Thus, understanding the drivers of successful grassy fuel ignition is key to developing a comprehensive description of the process leading to fire spread. In the wildland-urban interface, hot metal particles produced by powerline failures or mechanical equipment operations are a leading ignition source for these types of fuels. The goal of this study is to develop improved understanding of the role of fuel species and physical characteristics on the ignition behavior of grass fuels when exposed to hot metal particles. Three common California invasive grass species were studied in their natural configuration as well as in configurations in which fuel particles have been shredded or made into a powder. Overall, it was observed that the ignition temperature was lower in fuels in their powder form than fuels in a shredded or natural form. Furthermore, the findings here align with prior works, indicating that the presence of chemical compounds such as lignin and proteins may hinder ignition. Consequently, wheatgrass fuels, which have higher lignin and protein content, consistently required higher temperatures to ignite (460°C) compared to Avena (370°C), Bromus (348°C), and excelsior fuels (350°C), which contain these compounds in lower concentrations.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.