氢吸附扶手椅石墨烯纳米带的特征丰富的基本特性:从第一性原理计算的见解†

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-08-01 DOI:10.1039/D5RA04327A
D. M. Hoat, Khuong Dien Vo, Ngoc Thanh Thuy Tran, Quoc Duy Ho, Minh Triet Dang, Huynh Anh Huy, Duong Trong Nhan and Duy Khanh Nguyen
{"title":"氢吸附扶手椅石墨烯纳米带的特征丰富的基本特性:从第一性原理计算的见解†","authors":"D. M. Hoat, Khuong Dien Vo, Ngoc Thanh Thuy Tran, Quoc Duy Ho, Minh Triet Dang, Huynh Anh Huy, Duong Trong Nhan and Duy Khanh Nguyen","doi":"10.1039/D5RA04327A","DOIUrl":null,"url":null,"abstract":"<p >Using first-principles calculations, we report on the notable structural, electronic, and magnetic properties of hydrogen-adsorbed 7-armchair graphene nanoribbons (7-AGNR) at various adatom concentrations and distributions. Key findings include optimal structural parameters, adsorption energies, one-dimensional electronic band structures, density of states (DOS), charge density distributions, charge density differences, and spin density distributions. Our results indicate that hydrogen atoms preferentially adsorb on the top sites of carbon atoms, with double-side adsorption being more stable than single-side adsorption. Even-hydrogenated 7-AGNR configurations behave as nonmagnetic semiconductors with varying bandgaps, while odd-hydrogenated configurations exhibit ferromagnetic behavior with different bandgaps. The number of unpaired hydrogen adatoms influences the magnetic moments of these configurations. Specifically, the magnetic moment can reach up to 7 <em>μ</em><small><sub>B</sub></small> for complete single-side hydrogenation, while all other odd-hydrogenated configurations generally display a magnetic moment of 1 <em>μ</em><small><sub>B</sub></small>. This behavior is attributed to the complex hybridization between hydrogen and carbon orbitals. This research highlights the potential of hydrogen-adsorbed 7-AGNR systems for applications in advanced electronics, optoelectronics, and spintronics.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 33","pages":" 27139-27153"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra04327a?page=search","citationCount":"0","resultStr":"{\"title\":\"Feature-rich fundamental properties of hydrogen-adsorbed armchair graphene nanoribbons: insights from first-principles calculations†\",\"authors\":\"D. M. Hoat, Khuong Dien Vo, Ngoc Thanh Thuy Tran, Quoc Duy Ho, Minh Triet Dang, Huynh Anh Huy, Duong Trong Nhan and Duy Khanh Nguyen\",\"doi\":\"10.1039/D5RA04327A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Using first-principles calculations, we report on the notable structural, electronic, and magnetic properties of hydrogen-adsorbed 7-armchair graphene nanoribbons (7-AGNR) at various adatom concentrations and distributions. Key findings include optimal structural parameters, adsorption energies, one-dimensional electronic band structures, density of states (DOS), charge density distributions, charge density differences, and spin density distributions. Our results indicate that hydrogen atoms preferentially adsorb on the top sites of carbon atoms, with double-side adsorption being more stable than single-side adsorption. Even-hydrogenated 7-AGNR configurations behave as nonmagnetic semiconductors with varying bandgaps, while odd-hydrogenated configurations exhibit ferromagnetic behavior with different bandgaps. The number of unpaired hydrogen adatoms influences the magnetic moments of these configurations. Specifically, the magnetic moment can reach up to 7 <em>μ</em><small><sub>B</sub></small> for complete single-side hydrogenation, while all other odd-hydrogenated configurations generally display a magnetic moment of 1 <em>μ</em><small><sub>B</sub></small>. This behavior is attributed to the complex hybridization between hydrogen and carbon orbitals. This research highlights the potential of hydrogen-adsorbed 7-AGNR systems for applications in advanced electronics, optoelectronics, and spintronics.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 33\",\"pages\":\" 27139-27153\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra04327a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra04327a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra04327a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用第一性原理计算,我们报告了在不同的吸附原子浓度和分布下,氢吸附的7-扶手型石墨烯纳米带(7-AGNR)显著的结构、电子和磁性能。主要发现包括最佳结构参数、吸附能、一维电子能带结构、态密度、电荷密度分布、电荷密度差和自旋密度分布。结果表明,氢原子优先吸附在碳原子的顶部位置,双面吸附比单面吸附更稳定。偶氢化的7-AGNR结构在不同带隙下表现为非磁性半导体,而偶氢化的7-AGNR结构在不同带隙下表现为铁磁性半导体。未配对氢原子的数目影响这些构型的磁矩。其中,单侧完全氢化的磁矩可达7 μB,而其他奇氢化构型的磁矩一般为1 μB。这种行为归因于氢和碳轨道之间的复杂杂化。这项研究强调了氢吸附7-AGNR系统在先进电子学、光电子学和自旋电子学中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Feature-rich fundamental properties of hydrogen-adsorbed armchair graphene nanoribbons: insights from first-principles calculations†

Feature-rich fundamental properties of hydrogen-adsorbed armchair graphene nanoribbons: insights from first-principles calculations†

Using first-principles calculations, we report on the notable structural, electronic, and magnetic properties of hydrogen-adsorbed 7-armchair graphene nanoribbons (7-AGNR) at various adatom concentrations and distributions. Key findings include optimal structural parameters, adsorption energies, one-dimensional electronic band structures, density of states (DOS), charge density distributions, charge density differences, and spin density distributions. Our results indicate that hydrogen atoms preferentially adsorb on the top sites of carbon atoms, with double-side adsorption being more stable than single-side adsorption. Even-hydrogenated 7-AGNR configurations behave as nonmagnetic semiconductors with varying bandgaps, while odd-hydrogenated configurations exhibit ferromagnetic behavior with different bandgaps. The number of unpaired hydrogen adatoms influences the magnetic moments of these configurations. Specifically, the magnetic moment can reach up to 7 μB for complete single-side hydrogenation, while all other odd-hydrogenated configurations generally display a magnetic moment of 1 μB. This behavior is attributed to the complex hybridization between hydrogen and carbon orbitals. This research highlights the potential of hydrogen-adsorbed 7-AGNR systems for applications in advanced electronics, optoelectronics, and spintronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信